Francesca Accioni, Giovanna Rassu, Antonio Brunetti, Erika Plicanti, Giulia Freer, Antonio Carta, Paolo Giunchedi, Elisabetta Gavini
{"title":"Nasal Emulgel's Role in Preventing Coronavirus Infection.","authors":"Francesca Accioni, Giovanna Rassu, Antonio Brunetti, Erika Plicanti, Giulia Freer, Antonio Carta, Paolo Giunchedi, Elisabetta Gavini","doi":"10.3390/pharmaceutics17060795","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Coronaviruses (CoVs) are a large family of respiratory viruses that cause respiratory illnesses ranging from mild colds to severe diseases such as severe acute respiratory syndrome and pandemics. The nasal cavity is a primary site for CoV entry and transmission. The study aimed to prepare a novel mucoadhesive emulgel specifically formulated with simple, safe, and cost-effective excipients to create a barrier on the nasal mucosa that impedes CoV infection. This formulation strategy was specifically designed to enable rapid and straightforward in vivo translation, addressing a critical gap in preventive measures against respiratory viruses. <b>Methods</b>: Three emulgels, containing macadamia oil, Carbopol and different percentages of hydroxypropyl methylcellulose (1, 1.2 and 1.5% (w/v), HPMC), were properly prepared and characterized for mucoadhesion, viscosity, and spreadability. The biological activity against SARS-CoV-2 was evaluated in vitro on infected epithelial cells. <b>Results</b>: The emulgel with 1.2% HPMC demonstrated optimal physicochemical properties (mucoadhesion: 342 ± 9 mN/cm<sup>2</sup>; viscosity: 1080 ± 83 cp; spreadability: 7.27 ± 0.06 cm) suitable for nasal application. Importantly, in vitro biological assays demonstrated that this emulgel significantly inhibits SARS-CoV-2 infection in epithelial cells, indicating an effective barrier to viral diffusion. <b>Conclusions</b>: By employing readily available, safe, and inexpensive excipients, this novel mucoadhesive emulgel offers a practical, scalable, and rapidly translatable nasal prophylactic approach to prevent early SARS-CoV-2 infection, addressing a critical unmet need in pandemic preparedness.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 6","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197114/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17060795","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Coronaviruses (CoVs) are a large family of respiratory viruses that cause respiratory illnesses ranging from mild colds to severe diseases such as severe acute respiratory syndrome and pandemics. The nasal cavity is a primary site for CoV entry and transmission. The study aimed to prepare a novel mucoadhesive emulgel specifically formulated with simple, safe, and cost-effective excipients to create a barrier on the nasal mucosa that impedes CoV infection. This formulation strategy was specifically designed to enable rapid and straightforward in vivo translation, addressing a critical gap in preventive measures against respiratory viruses. Methods: Three emulgels, containing macadamia oil, Carbopol and different percentages of hydroxypropyl methylcellulose (1, 1.2 and 1.5% (w/v), HPMC), were properly prepared and characterized for mucoadhesion, viscosity, and spreadability. The biological activity against SARS-CoV-2 was evaluated in vitro on infected epithelial cells. Results: The emulgel with 1.2% HPMC demonstrated optimal physicochemical properties (mucoadhesion: 342 ± 9 mN/cm2; viscosity: 1080 ± 83 cp; spreadability: 7.27 ± 0.06 cm) suitable for nasal application. Importantly, in vitro biological assays demonstrated that this emulgel significantly inhibits SARS-CoV-2 infection in epithelial cells, indicating an effective barrier to viral diffusion. Conclusions: By employing readily available, safe, and inexpensive excipients, this novel mucoadhesive emulgel offers a practical, scalable, and rapidly translatable nasal prophylactic approach to prevent early SARS-CoV-2 infection, addressing a critical unmet need in pandemic preparedness.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.