{"title":"Alterations in dynamic effective connectivity of brain functional networks in patients with high myopia: a Granger causality analysis.","authors":"Lin Zhou, Hao-Yu Yuan, Hua Chai, Zhuo-Er Dong, Li-Li Yao, Yi-Chong Duan, Xiao-Rong Wu","doi":"10.1097/WNR.0000000000002191","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Although previous neuroimaging studies have revealed alterations in the static brain networks of patients with high myopia, little is known about changes in their dynamic brain networks, particularly regarding directional connectivity within these networks, warranting further investigation.</p><p><strong>Methods: </strong>In this study, resting-state functional MRI was conducted on 82 confirmed patients with high myopia and 59 healthy controls. Employing dynamic Granger causality analysis, sliding time windows, and K-means clustering, we assessed dynamic alterations in effective connectivity within the brain's functional networks in patients with high myopia.</p><p><strong>Results: </strong>Patients with high myopia show significantly enhanced dynamic effective connectivity (dEC) between the visual network and the default mode network (DMN) compared with healthy controls. Furthermore, aberrant connectivity is detected between the visual network and the limbic network. In addition, intravisual network dEC is markedly increased. In state 1, the frequency differed significantly between the two groups, with high myopia patients showing a markedly higher frequency than healthy controls.</p><p><strong>Conclusion: </strong>This study found that patients with high myopia exhibit significantly altered patterns of dEC, especially increased connectivity between the visual network, the DMN, and the limbic network. Furthermore, significantly increased intranetwork dEC within the visual network indicates enhanced internal visual information processing. These findings offer new insights into the neural mechanisms of high myopia and suggest that long-term visual impairment may trigger functional reorganization in both visual and nonvisual brain networks.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroreport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNR.0000000000002191","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Although previous neuroimaging studies have revealed alterations in the static brain networks of patients with high myopia, little is known about changes in their dynamic brain networks, particularly regarding directional connectivity within these networks, warranting further investigation.
Methods: In this study, resting-state functional MRI was conducted on 82 confirmed patients with high myopia and 59 healthy controls. Employing dynamic Granger causality analysis, sliding time windows, and K-means clustering, we assessed dynamic alterations in effective connectivity within the brain's functional networks in patients with high myopia.
Results: Patients with high myopia show significantly enhanced dynamic effective connectivity (dEC) between the visual network and the default mode network (DMN) compared with healthy controls. Furthermore, aberrant connectivity is detected between the visual network and the limbic network. In addition, intravisual network dEC is markedly increased. In state 1, the frequency differed significantly between the two groups, with high myopia patients showing a markedly higher frequency than healthy controls.
Conclusion: This study found that patients with high myopia exhibit significantly altered patterns of dEC, especially increased connectivity between the visual network, the DMN, and the limbic network. Furthermore, significantly increased intranetwork dEC within the visual network indicates enhanced internal visual information processing. These findings offer new insights into the neural mechanisms of high myopia and suggest that long-term visual impairment may trigger functional reorganization in both visual and nonvisual brain networks.
期刊介绍:
NeuroReport is a channel for rapid communication of new findings in neuroscience. It is a forum for the publication of short but complete reports of important studies that require very fast publication. Papers are accepted on the basis of the novelty of their finding, on their significance for neuroscience and on a clear need for rapid publication. Preliminary communications are not suitable for the Journal. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.
The core interest of the Journal is on studies that cast light on how the brain (and the whole of the nervous system) works.
We aim to give authors a decision on their submission within 2-5 weeks, and all accepted articles appear in the next issue to press.