CryoDRGN-AI: neural ab initio reconstruction of challenging cryo-EM and cryo-ET datasets.

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Nature Methods Pub Date : 2025-07-01 Epub Date: 2025-06-26 DOI:10.1038/s41592-025-02720-4
Axel Levy, Rishwanth Raghu, J Ryan Feathers, Michal Grzadkowski, Frédéric Poitevin, Jake D Johnston, Francesca Vallese, Oliver Biggs Clarke, Gordon Wetzstein, Ellen D Zhong
{"title":"CryoDRGN-AI: neural ab initio reconstruction of challenging cryo-EM and cryo-ET datasets.","authors":"Axel Levy, Rishwanth Raghu, J Ryan Feathers, Michal Grzadkowski, Frédéric Poitevin, Jake D Johnston, Francesca Vallese, Oliver Biggs Clarke, Gordon Wetzstein, Ellen D Zhong","doi":"10.1038/s41592-025-02720-4","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins and other biomolecules form dynamic macromolecular machines that are tightly orchestrated to move, bind and perform chemistry. Cryo-electron microscopy and cryo-electron tomography can access the intrinsic heterogeneity of these complexes and are therefore key tools for understanding their function. However, three-dimensional reconstruction of the collected imaging data presents a challenging computational problem, especially without any starting information, a setting termed ab initio reconstruction. Here we introduce cryoDRGN-AI, a method leveraging an expressive neural representation and combining an exhaustive search strategy with gradient-based optimization to process challenging heterogeneous datasets. Using cryoDRGN-AI, we reveal new conformational states in large datasets, reconstruct previously unresolved motions from unfiltered datasets and demonstrate ab initio reconstruction of biomolecular complexes from in situ data. With this expressive and scalable model for structure determination, we hope to unlock the full potential of cryo-electron microscopy and cryo-electron tomography as a high-throughput tool for structural biology and discovery.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":"1486-1494"},"PeriodicalIF":36.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02720-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Proteins and other biomolecules form dynamic macromolecular machines that are tightly orchestrated to move, bind and perform chemistry. Cryo-electron microscopy and cryo-electron tomography can access the intrinsic heterogeneity of these complexes and are therefore key tools for understanding their function. However, three-dimensional reconstruction of the collected imaging data presents a challenging computational problem, especially without any starting information, a setting termed ab initio reconstruction. Here we introduce cryoDRGN-AI, a method leveraging an expressive neural representation and combining an exhaustive search strategy with gradient-based optimization to process challenging heterogeneous datasets. Using cryoDRGN-AI, we reveal new conformational states in large datasets, reconstruct previously unresolved motions from unfiltered datasets and demonstrate ab initio reconstruction of biomolecular complexes from in situ data. With this expressive and scalable model for structure determination, we hope to unlock the full potential of cryo-electron microscopy and cryo-electron tomography as a high-throughput tool for structural biology and discovery.

CryoDRGN-AI:具有挑战性的低温em和低温et数据集的神经从头算重建。
蛋白质和其他生物分子形成了动态的大分子机器,它们紧密地协调着移动、结合和进行化学反应。低温电子显微镜和低温电子断层扫描可以获得这些复合物的内在异质性,因此是了解其功能的关键工具。然而,收集到的成像数据的三维重建提出了一个具有挑战性的计算问题,特别是在没有任何起始信息的情况下,一种称为从头开始重建的设置。在这里,我们介绍了cryoDRGN-AI,这是一种利用表达性神经表示并结合穷举搜索策略和基于梯度的优化来处理具有挑战性的异构数据集的方法。利用cryoDRGN-AI,我们在大型数据集中揭示了新的构象状态,从未过滤的数据集中重建了以前未解决的运动,并从原位数据中从头开始重建了生物分子复合物。有了这个表达和可扩展的结构确定模型,我们希望释放低温电子显微镜和低温电子断层扫描作为结构生物学和发现的高通量工具的全部潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信