{"title":"FpFumB Is Required for Basic Biological Processes and Virulence in <i>Fusarium proliferatum</i> by Modulating DNA Repair Through Interaction with FpSae2.","authors":"Yizhou Gao, Haibo Li, Yong Liu, Yuqing Wang, Jingwen Xue, Yitong Wang, Zhihong Wu","doi":"10.3390/microorganisms13061433","DOIUrl":null,"url":null,"abstract":"<p><p>Fumarase plays a pivotal role in the tricarboxylic acid cycle, but its functions in plant pathogenic fungi are not well understood. We identified two fumarase genes in <i>Fusarium proliferatum</i> and generated individual deletion mutants. Loss of <i>FpFumB</i> led to defects in growth, sporulation, stress tolerance, and virulence. Exogenous malate supplementation restored growth defects. Site-directed mutagenesis of residues G452 and A463 reduced FpFumB enzyme activity. Transcriptomic analysis identified significant changes in gene expression related to different metabolic pathways. Protein interaction assays showed that FpFumB interacts with the DNA repair protein FpSae2. Both Δ<i>FpFumB</i> and Δ<i>FpSae2</i> mutants displayed altered sensitivity to DNA-damaging agents and reduced virulence, indicating that FpFumB modulates DNA repair and pathogenicity through its interaction with FpSae2. Together, these findings highlight FpFumB as a key regulator of basic biological processes, DNA damage repair, and virulence in <i>Fusarium proliferatum</i>.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12196060/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13061433","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fumarase plays a pivotal role in the tricarboxylic acid cycle, but its functions in plant pathogenic fungi are not well understood. We identified two fumarase genes in Fusarium proliferatum and generated individual deletion mutants. Loss of FpFumB led to defects in growth, sporulation, stress tolerance, and virulence. Exogenous malate supplementation restored growth defects. Site-directed mutagenesis of residues G452 and A463 reduced FpFumB enzyme activity. Transcriptomic analysis identified significant changes in gene expression related to different metabolic pathways. Protein interaction assays showed that FpFumB interacts with the DNA repair protein FpSae2. Both ΔFpFumB and ΔFpSae2 mutants displayed altered sensitivity to DNA-damaging agents and reduced virulence, indicating that FpFumB modulates DNA repair and pathogenicity through its interaction with FpSae2. Together, these findings highlight FpFumB as a key regulator of basic biological processes, DNA damage repair, and virulence in Fusarium proliferatum.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.