{"title":"The Study of the Transient Dose Rate Effect on ROIC Pixels in Ultra-Large-Scale Infrared Detectors.","authors":"Yuan Liu, Bin Wang, Ziyuan Tang, Mengwei Chen, Hui Wang, Weitao Yang, Longsheng Wu","doi":"10.3390/mi16060700","DOIUrl":null,"url":null,"abstract":"<p><p>Infrared image sensors are crucial across various industries. However, with technological advancements, the growing scale of infrared image sensors has made the impact of transient dose rate effects increasingly significant. It is necessary to conduct relevant radiation effect studies to provide the theoretical and data basis for future radiation-hardened design. This study explores the response of large-area N-wells in the readout circuit of infrared detectors to transient dose rate effects. The TCAD simulation results indicate that the expansive N-well area in the merged-design pixel units generates significant current pulses when exposed to gamma-ray irradiation. Specifically, at dose rates of 3 × 10<sup>11</sup> rad/s, 5 × 10<sup>11</sup> rad/s, 7 × 10<sup>11</sup> rad/s, and 9 × 10<sup>11</sup> rad/s, the pulse currents measured are 39 nA, 64 nA, 89 nA, and 119 nA, respectively. Due to the spatial constraints of the 55 nm merged design, the close proximity of the GND to the N-well creates a high potential barrier near the N-well, obstructing the path between the GND and the substrate, which results in the pulse current exhibiting a stepped-like characteristic.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195224/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16060700","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Infrared image sensors are crucial across various industries. However, with technological advancements, the growing scale of infrared image sensors has made the impact of transient dose rate effects increasingly significant. It is necessary to conduct relevant radiation effect studies to provide the theoretical and data basis for future radiation-hardened design. This study explores the response of large-area N-wells in the readout circuit of infrared detectors to transient dose rate effects. The TCAD simulation results indicate that the expansive N-well area in the merged-design pixel units generates significant current pulses when exposed to gamma-ray irradiation. Specifically, at dose rates of 3 × 1011 rad/s, 5 × 1011 rad/s, 7 × 1011 rad/s, and 9 × 1011 rad/s, the pulse currents measured are 39 nA, 64 nA, 89 nA, and 119 nA, respectively. Due to the spatial constraints of the 55 nm merged design, the close proximity of the GND to the N-well creates a high potential barrier near the N-well, obstructing the path between the GND and the substrate, which results in the pulse current exhibiting a stepped-like characteristic.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.