{"title":"γ neuromodulations: unraveling biomarkers for neurological and psychiatric disorders.","authors":"Zhong-Peng Dai, Qiang Wen, Ping Wu, Yan-Ni Zhang, Cai-Lian Fang, Meng-Yuan Dai, Hong-Liang Zhou, Huan Wang, Hao Tang, Si-Qi Zhang, Xiao-Kun Li, Jian-Song Ji, Liu-Xi Chu, Zhou-Guang Wang","doi":"10.1186/s40779-025-00619-x","DOIUrl":null,"url":null,"abstract":"<p><p>γ neuromodulation has emerged as a promising strategy for addressing neurological and psychiatric disorders, particularly in regulating executive and cognitive functions. This review explores the latest neuromodulation techniques, focusing on the critical role of γ oscillations in various brain disorders. Direct γ neuromodulation induces γ-frequency oscillations to synchronize disrupted brain networks, while indirect methods influence γ oscillations by modulating cortical excitability. We investigate how monitoring dynamic features of γ oscillations allows for detailed evaluations of neuromodulation effectiveness. By targeting γ oscillatory patterns and restoring healthy cross-frequency coupling, interventions may alleviate cognitive and behavioral symptoms linked to disrupted communication. This review examines clinical applications of γ neuromodulations, including enhancing cognitive function through 40 Hz multisensory stimulation in Alzheimer's disease, improving motor function in Parkinson's disease, controlling seizures in epilepsy, and modulating emotional dysfunctions in depression. Additionally, these neuromodulation strategies aim to regulate excitatory-inhibitory imbalances and restore γ synchrony across neurological and psychiatric disorders. The review highlights the potential of γ oscillations as biomarkers to boost restorative results in clinical applications of neuromodulation. Future studies might focus on integrating multimodal personalized protocols, artificial intelligence (AI) driven frameworks for neural decoding, and global multicenter collaborations to standardize and scale precision treatments across diverse disorders.</p>","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"12 1","pages":"32"},"PeriodicalIF":16.7000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203730/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40779-025-00619-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
γ neuromodulation has emerged as a promising strategy for addressing neurological and psychiatric disorders, particularly in regulating executive and cognitive functions. This review explores the latest neuromodulation techniques, focusing on the critical role of γ oscillations in various brain disorders. Direct γ neuromodulation induces γ-frequency oscillations to synchronize disrupted brain networks, while indirect methods influence γ oscillations by modulating cortical excitability. We investigate how monitoring dynamic features of γ oscillations allows for detailed evaluations of neuromodulation effectiveness. By targeting γ oscillatory patterns and restoring healthy cross-frequency coupling, interventions may alleviate cognitive and behavioral symptoms linked to disrupted communication. This review examines clinical applications of γ neuromodulations, including enhancing cognitive function through 40 Hz multisensory stimulation in Alzheimer's disease, improving motor function in Parkinson's disease, controlling seizures in epilepsy, and modulating emotional dysfunctions in depression. Additionally, these neuromodulation strategies aim to regulate excitatory-inhibitory imbalances and restore γ synchrony across neurological and psychiatric disorders. The review highlights the potential of γ oscillations as biomarkers to boost restorative results in clinical applications of neuromodulation. Future studies might focus on integrating multimodal personalized protocols, artificial intelligence (AI) driven frameworks for neural decoding, and global multicenter collaborations to standardize and scale precision treatments across diverse disorders.
期刊介绍:
Military Medical Research is an open-access, peer-reviewed journal that aims to share the most up-to-date evidence and innovative discoveries in a wide range of fields, including basic and clinical sciences, translational research, precision medicine, emerging interdisciplinary subjects, and advanced technologies. Our primary focus is on modern military medicine; however, we also encourage submissions from other related areas. This includes, but is not limited to, basic medical research with the potential for translation into practice, as well as clinical research that could impact medical care both in times of warfare and during peacetime military operations.