Kairui Cao, Zekun Li, Guanglu Hao, Rui Li, Jie Zhang, Jing Ma
{"title":"Modified Hammerstein-Like Hysteresis Modeling and Composite Control Methods for Fast Steering Mirrors.","authors":"Kairui Cao, Zekun Li, Guanglu Hao, Rui Li, Jie Zhang, Jing Ma","doi":"10.3390/mi16060626","DOIUrl":null,"url":null,"abstract":"<p><p>Fast steering mirrors (FSMs), actuated by piezoelectric ceramics, play pivotal roles in satellite laser communication, distinguished by their high bandwidth and fast responsiveness, thereby facilitating the precise pointing and robust tracking of laser beams. However, the dynamic performance of FSMs is notably impaired by the hysteresis nonlinearity inherent in piezoelectric ceramics. Under dynamic conditions, rate-dependent hysteresis models and Hammerstein models are predominantly employed to characterize hysteresis nonlinearity. By combining the advantages of these two models, a hysteresis model termed modified Hammerstein-like (MHL) model is proposed. This model integrates an input time delay, a rate-dependent hysteresis term, and a linear dynamic term in a cascaded structure, effectively capturing the dynamic characteristics of hysteresis systems across a broad frequency range. Additionally, a composite control strategy is tailored for the MHL model which consists of a feedforward compensator based on a rate-dependent hysteresis inverse model and a proportional-integral (PI) controller for closed-loop regulation. Experimental results demonstrate the effectiveness of the proposed modeling and composite control methods.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194891/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16060626","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fast steering mirrors (FSMs), actuated by piezoelectric ceramics, play pivotal roles in satellite laser communication, distinguished by their high bandwidth and fast responsiveness, thereby facilitating the precise pointing and robust tracking of laser beams. However, the dynamic performance of FSMs is notably impaired by the hysteresis nonlinearity inherent in piezoelectric ceramics. Under dynamic conditions, rate-dependent hysteresis models and Hammerstein models are predominantly employed to characterize hysteresis nonlinearity. By combining the advantages of these two models, a hysteresis model termed modified Hammerstein-like (MHL) model is proposed. This model integrates an input time delay, a rate-dependent hysteresis term, and a linear dynamic term in a cascaded structure, effectively capturing the dynamic characteristics of hysteresis systems across a broad frequency range. Additionally, a composite control strategy is tailored for the MHL model which consists of a feedforward compensator based on a rate-dependent hysteresis inverse model and a proportional-integral (PI) controller for closed-loop regulation. Experimental results demonstrate the effectiveness of the proposed modeling and composite control methods.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.