Influence of Nonlinear Effects Induced by Mode Coupling on Vibration Trajectories of MEMS Micromirrors.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-06-19 DOI:10.3390/mi16060723
Zhen Chen, Dayong Qiao, Anjie Peng
{"title":"Influence of Nonlinear Effects Induced by Mode Coupling on Vibration Trajectories of MEMS Micromirrors.","authors":"Zhen Chen, Dayong Qiao, Anjie Peng","doi":"10.3390/mi16060723","DOIUrl":null,"url":null,"abstract":"<p><p>Detection of the vibration trajectories of MEMS micromirrors is crucial for ensuring their application performance. This study investigates key factors influencing micromirror vibration trajectories. When actuated by a square-wave signal containing high-frequency components, micromirrors exhibit mode coupling vibrations. By incorporating a mode coupling mechanism, this paper establishes a comprehensive vibration trajectory model for micromirrors. Numerical simulations were performed to obtain trajectory solutions. Both the experimental and simulation results demonstrate that the mode coupling leads to deviations between the actual trajectory and the expected sinusoidal pattern. These deviations compromise the accuracy of trajectory prediction systems, which typically assume that the trajectory follows a sinusoidal pattern. To mitigate the deviations caused by mode coupling, this study proposes structural parameter optimization during the micromirror design process.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194898/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16060723","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Detection of the vibration trajectories of MEMS micromirrors is crucial for ensuring their application performance. This study investigates key factors influencing micromirror vibration trajectories. When actuated by a square-wave signal containing high-frequency components, micromirrors exhibit mode coupling vibrations. By incorporating a mode coupling mechanism, this paper establishes a comprehensive vibration trajectory model for micromirrors. Numerical simulations were performed to obtain trajectory solutions. Both the experimental and simulation results demonstrate that the mode coupling leads to deviations between the actual trajectory and the expected sinusoidal pattern. These deviations compromise the accuracy of trajectory prediction systems, which typically assume that the trajectory follows a sinusoidal pattern. To mitigate the deviations caused by mode coupling, this study proposes structural parameter optimization during the micromirror design process.

模耦合非线性效应对MEMS微镜振动轨迹的影响。
MEMS微镜的振动轨迹检测是保证其应用性能的关键。本研究探讨了影响微镜振动轨迹的关键因素。当由包含高频成分的方波信号驱动时,微镜表现出模式耦合振动。通过引入模态耦合机制,建立了微反射镜的综合振动轨迹模型。通过数值模拟得到弹道解。实验和仿真结果都表明,模态耦合导致了实际轨迹与期望正弦模式之间的偏差。这些偏差损害了轨迹预测系统的准确性,这些系统通常假设轨迹遵循正弦模式。为了减轻模态耦合带来的偏差,本研究提出了在微镜设计过程中优化结构参数的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信