{"title":"A Pipette for High-Resolution Sampling and Delivery of pL Bio-Samples.","authors":"Ziyang Han, Pengfei Gong, Hengxiang Su, Zehang Gao, Shilun Feng, Jianlong Zhao","doi":"10.3390/mi16060630","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional laboratory methods for handling valuable biological samples typically use pipettes or needles, which are prone to issues such as dead volume and sample waste. Furthermore, the sampling and processing of pathogenic bacteria, such as <i>Escherichia coli</i> (<i>E. coli</i>) in environmental wastewater, require labor-intensive procedures with multiple complex steps. To overcome these limitations, we developed a pipette integrated with a microfluidic chip for bacteria sampling and delivery. This pipette can provide the negative pressure to microfluidic chips for sampling, the constant temperature unit for biological reaction, and programs for automatic control (suction, heating, liquid discharge, and cleaning) and display. The droplet chip employs a cross-channel structure to generate droplets and incorporates a designated droplet storage and detection area. Utilizing this innovative device, we have demonstrated the generation, transportation, and storage of pL droplets, as well as quantitatively detected <i>E. coli</i> samples across various concentrations. The test results have demonstrated the overall reliability and data consistency of the system. Overall, our device achieves the precise sampling of pL volumes, offering a simple yet promising solution for the sampling and delivery of bio-samples in remote settings.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195456/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16060630","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional laboratory methods for handling valuable biological samples typically use pipettes or needles, which are prone to issues such as dead volume and sample waste. Furthermore, the sampling and processing of pathogenic bacteria, such as Escherichia coli (E. coli) in environmental wastewater, require labor-intensive procedures with multiple complex steps. To overcome these limitations, we developed a pipette integrated with a microfluidic chip for bacteria sampling and delivery. This pipette can provide the negative pressure to microfluidic chips for sampling, the constant temperature unit for biological reaction, and programs for automatic control (suction, heating, liquid discharge, and cleaning) and display. The droplet chip employs a cross-channel structure to generate droplets and incorporates a designated droplet storage and detection area. Utilizing this innovative device, we have demonstrated the generation, transportation, and storage of pL droplets, as well as quantitatively detected E. coli samples across various concentrations. The test results have demonstrated the overall reliability and data consistency of the system. Overall, our device achieves the precise sampling of pL volumes, offering a simple yet promising solution for the sampling and delivery of bio-samples in remote settings.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.