Rihards Gailitis, Liga Radina, Leonids Pakrastins, Andina Sprince
{"title":"Mechanical and Early Long-Term Property Assessment of Foamed 3D-Printable Geopolymer Composite.","authors":"Rihards Gailitis, Liga Radina, Leonids Pakrastins, Andina Sprince","doi":"10.3390/ma18122837","DOIUrl":null,"url":null,"abstract":"<p><p>Additive manufacturing has been of considerable interest for the last 10 years. Cementitious composites have been developed to ensure fast and effective structure printing. To address sustainability and reduce the environmental impact of Portland cement-based composites, geopolymer composites have been developed that can be printed. This brings us to this study's aim, which is to allow the printing of recycled lightweight structures with not only the ability to act as a structural material but also insulation capabilities. This study focuses on mix design development and the mechanical strength, creep, and shrinkage properties of these composites. The results show that foamed 3D-printed fly ash-based geopolymer composites may have reduced compressive strength, but still have sufficient strength to be used as a structural material. Furthermore, their creep and shrinkage strain are lower than those of the composite without foaming agent introduction.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195518/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18122837","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing has been of considerable interest for the last 10 years. Cementitious composites have been developed to ensure fast and effective structure printing. To address sustainability and reduce the environmental impact of Portland cement-based composites, geopolymer composites have been developed that can be printed. This brings us to this study's aim, which is to allow the printing of recycled lightweight structures with not only the ability to act as a structural material but also insulation capabilities. This study focuses on mix design development and the mechanical strength, creep, and shrinkage properties of these composites. The results show that foamed 3D-printed fly ash-based geopolymer composites may have reduced compressive strength, but still have sufficient strength to be used as a structural material. Furthermore, their creep and shrinkage strain are lower than those of the composite without foaming agent introduction.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.