Xueni Zhang, Yidi Mo, Chunbin Lu, Zhijian Su, Xiaokun Li
{"title":"Fibroblast growth factors and endometrial decidualization: models, mechanisms, and related pathologies.","authors":"Xueni Zhang, Yidi Mo, Chunbin Lu, Zhijian Su, Xiaokun Li","doi":"10.1631/jzus.B2300830","DOIUrl":null,"url":null,"abstract":"<p><p>The onset of pregnancy is marked by the formation of a zygote, while the culmination of gestation is manifested by the delivery of a fetus. Meanwhile, a successful pregnancy entails a meticulously coordinated sequence of events from embryo implantation to sustained decidualization of the uterus to placental development and childbirth. The decidual reaction, a pivotal process occurring within the endometrium during pregnancy, is finely regulated by sex steroids and cytokines. Notably, fibroblast growth factors (FGFs), particularly FGF2, play a critical role in this physiological cascade. Dysregulated FGF expression may trigger inadequate decidualization, precipitating a spectrum of adverse pregnancy outcomes, including preeclampsia, recurrent implantation failure, and miscarriage. Furthermore, the human decidua, distinct from most mammalian species and similar to great apes, undergoes regular cycles of formation and shedding, independent of the presence of the embryo in the endometrium. This process is also tightly controlled by various FGFs. In this review, we comprehensively compare diverse research decidualization models, delineate the trend of endometrial FGFs during the menstrual cycle, and provide a synopsis of endometrial diseases triggered by FGF dysregulation.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"26 6","pages":"573-588"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12219500/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University SCIENCE B","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1631/jzus.B2300830","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The onset of pregnancy is marked by the formation of a zygote, while the culmination of gestation is manifested by the delivery of a fetus. Meanwhile, a successful pregnancy entails a meticulously coordinated sequence of events from embryo implantation to sustained decidualization of the uterus to placental development and childbirth. The decidual reaction, a pivotal process occurring within the endometrium during pregnancy, is finely regulated by sex steroids and cytokines. Notably, fibroblast growth factors (FGFs), particularly FGF2, play a critical role in this physiological cascade. Dysregulated FGF expression may trigger inadequate decidualization, precipitating a spectrum of adverse pregnancy outcomes, including preeclampsia, recurrent implantation failure, and miscarriage. Furthermore, the human decidua, distinct from most mammalian species and similar to great apes, undergoes regular cycles of formation and shedding, independent of the presence of the embryo in the endometrium. This process is also tightly controlled by various FGFs. In this review, we comprehensively compare diverse research decidualization models, delineate the trend of endometrial FGFs during the menstrual cycle, and provide a synopsis of endometrial diseases triggered by FGF dysregulation.
期刊介绍:
Journal of Zheijang University SCIENCE B - Biomedicine & Biotechnology is an international journal that aims to present the latest development and achievements in scientific research in China and abroad to the world’s scientific community.
JZUS-B covers research in Biomedicine and Biotechnology and Biochemistry and topics related to life science subjects, such as Plant and Animal Sciences, Environment and Resource etc.