{"title":"PLK-1 suppresses centrosome maturation and microtubule polymerization to ensure faithful oocyte meiosis.","authors":"Juhi G Narula, Sarah M Wignall","doi":"10.1083/jcb.202503080","DOIUrl":null,"url":null,"abstract":"<p><p>Sexual reproduction relies on meiosis, a specialized cell division program that produces haploid gametes. Oocytes of most organisms lack centrosomes, and therefore chromosome segregation is mediated by acentrosomal spindles. Here, we explore the role of Polo-like kinase 1 (PLK-1) in Caenorhabditiselegans oocytes, revealing mechanisms that ensure the fidelity of this unique form of cell division. Previously, PLK-1 was shown to be required for nuclear envelope breakdown and chromosome segregation in oocytes. We now find that PLK-1 is also required for establishing and maintaining acentrosomal spindle organization and for preventing excess microtubule polymerization in these cells. Additionally, our studies revealed an unexpected new role for this essential kinase. While PLK-1 is known to be required for centrosome maturation during mitosis, we found that either removal of PLK-1 from oocytes or inhibition of its kinase activity caused premature recruitment of pericentriolar material to the sperm-provided centrioles following fertilization. Thus, PLK-1 suppresses centrosome maturation during oocyte meiosis, which is opposite to its role in mitosis. Taken together, our work identifies PLK-1 as a key player that promotes faithful acentrosomal meiosis in oocytes and demonstrates that its catalytic activity is required for carrying out these important roles.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"224 9","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203983/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1083/jcb.202503080","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sexual reproduction relies on meiosis, a specialized cell division program that produces haploid gametes. Oocytes of most organisms lack centrosomes, and therefore chromosome segregation is mediated by acentrosomal spindles. Here, we explore the role of Polo-like kinase 1 (PLK-1) in Caenorhabditiselegans oocytes, revealing mechanisms that ensure the fidelity of this unique form of cell division. Previously, PLK-1 was shown to be required for nuclear envelope breakdown and chromosome segregation in oocytes. We now find that PLK-1 is also required for establishing and maintaining acentrosomal spindle organization and for preventing excess microtubule polymerization in these cells. Additionally, our studies revealed an unexpected new role for this essential kinase. While PLK-1 is known to be required for centrosome maturation during mitosis, we found that either removal of PLK-1 from oocytes or inhibition of its kinase activity caused premature recruitment of pericentriolar material to the sperm-provided centrioles following fertilization. Thus, PLK-1 suppresses centrosome maturation during oocyte meiosis, which is opposite to its role in mitosis. Taken together, our work identifies PLK-1 as a key player that promotes faithful acentrosomal meiosis in oocytes and demonstrates that its catalytic activity is required for carrying out these important roles.
期刊介绍:
The Journal of Cell Biology (JCB) is a comprehensive journal dedicated to publishing original discoveries across all realms of cell biology. We invite papers presenting novel cellular or molecular advancements in various domains of basic cell biology, along with applied cell biology research in diverse systems such as immunology, neurobiology, metabolism, virology, developmental biology, and plant biology. We enthusiastically welcome submissions showcasing significant findings of interest to cell biologists, irrespective of the experimental approach.