Enhanced cytotoxicity against cancer cells by acetylation of a planar catechin analog.

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hiromu Ito, Yoshimi Shoji, Yuki Itabashi, Ken-Ichiro Matsumoto, Kei Ohkubo, Kiyoshi Fukuhara, Ikuo Nakanishi
{"title":"Enhanced cytotoxicity against cancer cells by acetylation of a planar catechin analog.","authors":"Hiromu Ito, Yoshimi Shoji, Yuki Itabashi, Ken-Ichiro Matsumoto, Kei Ohkubo, Kiyoshi Fukuhara, Ikuo Nakanishi","doi":"10.1080/10715762.2025.2525185","DOIUrl":null,"url":null,"abstract":"<p><p>Catechin is a major antioxidant and also shows anti-cancer effect. We have synthesized a catechin analog possessing a planar structure, planar catechin, which has 10-fold larger radical-scavenging activity than the parental (+)-catechin, and demonstrated that the planar catechin showed a significant cytotoxicity in cancer cells. However, the planar catechin has a possibility to lose the innate activity before reaching target cells, because of the higher reactivity with other biological molecules. In this study, we introduced acetyl groups to the phenolic hydroxy groups, which are considered as active sites of the planar catechin, in order to protect from the oxidation of the planar catechin, and examined the effects on cells regarding the toxicity. The acetylated planar catechin showed a remarkable cytotoxicity compared to the original planar catechin, especially in cancer cells, whereas the superoxide scavenging activity of the acetylated planar catechin was weak. On the other hand, after the acetylated planar catechin was treated with esterase, the enhanced superoxide scavenging activity was confirmed by an electron paramagnetic resonance technique. These results indicate that the activity of the planar catechin was maintained by acetylation of the phenolic hydroxy groups and the deprotection by intracellular esterase restored the activity, leading to the induction of the severe cytotoxicity.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"1-8"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2025.2525185","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Catechin is a major antioxidant and also shows anti-cancer effect. We have synthesized a catechin analog possessing a planar structure, planar catechin, which has 10-fold larger radical-scavenging activity than the parental (+)-catechin, and demonstrated that the planar catechin showed a significant cytotoxicity in cancer cells. However, the planar catechin has a possibility to lose the innate activity before reaching target cells, because of the higher reactivity with other biological molecules. In this study, we introduced acetyl groups to the phenolic hydroxy groups, which are considered as active sites of the planar catechin, in order to protect from the oxidation of the planar catechin, and examined the effects on cells regarding the toxicity. The acetylated planar catechin showed a remarkable cytotoxicity compared to the original planar catechin, especially in cancer cells, whereas the superoxide scavenging activity of the acetylated planar catechin was weak. On the other hand, after the acetylated planar catechin was treated with esterase, the enhanced superoxide scavenging activity was confirmed by an electron paramagnetic resonance technique. These results indicate that the activity of the planar catechin was maintained by acetylation of the phenolic hydroxy groups and the deprotection by intracellular esterase restored the activity, leading to the induction of the severe cytotoxicity.

平面儿茶素类似物乙酰化增强对癌细胞的细胞毒性。
儿茶素是一种主要的抗氧化剂,也有抗癌作用。我们合成了一种具有平面结构的儿茶素类似物,平面儿茶素,其清除自由基的活性比亲本(+)-儿茶素大10倍,并证明了平面儿茶素在癌细胞中表现出显著的细胞毒性。然而,平面儿茶素有可能在到达靶细胞之前失去固有活性,因为它与其他生物分子具有较高的反应性。本研究在平面儿茶素的活性位点酚羟基上引入乙酰基,以防止平面儿茶素的氧化,并从毒性方面考察其对细胞的影响。乙酰化的平面型儿茶素与原平面型儿茶素相比,表现出明显的细胞毒性,特别是对癌细胞,而乙酰化的平面型儿茶素清除超氧化物的活性较弱。另一方面,乙酰化平面儿茶素经酯酶处理后,通过电子顺磁共振技术证实其清除超氧化物的活性增强。这些结果表明,平面型儿茶素的活性是通过酚羟基的乙酰化维持的,细胞内酯酶的脱保护恢复了活性,从而诱导了严重的细胞毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信