Emotion recognition framework based on adaptive window selection and CA-KAN.

IF 3.9 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-06-24 DOI:10.1007/s11571-025-10283-5
Xuefen Lin, Linhui Fan, Yifan Gu, Zhixian Wu
{"title":"Emotion recognition framework based on adaptive window selection and CA-KAN.","authors":"Xuefen Lin, Linhui Fan, Yifan Gu, Zhixian Wu","doi":"10.1007/s11571-025-10283-5","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, emotion recognition, particularly EEG-based emotion recognition, has found widespread application across various domains. Enhancing EEG data processing and emotion recognition models remains a key research focus in this field. This paper presents an emotion recognition framework combining the CUSUM algorithm-based adaptive window selection technique with the convolutional attention-enhanced Kolmogorov-Arnold Networks (CA-KAN). The improved CUSUM algorithm effectively extracts the most emotion-relevant segments from raw EEG data. Furthermore, by enhancing the KAN network, the CA-KAN model achieves both high accuracy and efficiency in emotion recognition. The proposed framework achieved peak classification accuracies of 94.63% and 94.73% on the SEED and SEED-IV datasets, respectively. Additionally, the framework offers a lightweight advantage, demonstrating significant potential for real-world applications, including medical emotion monitoring and driver emotion detection.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"100"},"PeriodicalIF":3.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187633/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10283-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, emotion recognition, particularly EEG-based emotion recognition, has found widespread application across various domains. Enhancing EEG data processing and emotion recognition models remains a key research focus in this field. This paper presents an emotion recognition framework combining the CUSUM algorithm-based adaptive window selection technique with the convolutional attention-enhanced Kolmogorov-Arnold Networks (CA-KAN). The improved CUSUM algorithm effectively extracts the most emotion-relevant segments from raw EEG data. Furthermore, by enhancing the KAN network, the CA-KAN model achieves both high accuracy and efficiency in emotion recognition. The proposed framework achieved peak classification accuracies of 94.63% and 94.73% on the SEED and SEED-IV datasets, respectively. Additionally, the framework offers a lightweight advantage, demonstrating significant potential for real-world applications, including medical emotion monitoring and driver emotion detection.

基于自适应窗口选择和CA-KAN的情绪识别框架。
近年来,情感识别,特别是基于脑电图的情感识别,在各个领域得到了广泛的应用。增强脑电数据处理和情绪识别模型仍然是该领域的研究重点。本文提出了一种基于CUSUM算法的自适应窗口选择技术与卷积注意增强Kolmogorov-Arnold网络(CA-KAN)相结合的情绪识别框架。改进的CUSUM算法能有效地从原始脑电数据中提取出与情绪最相关的部分。此外,通过对KAN网络的改进,CA-KAN模型在情绪识别方面达到了较高的准确率和效率。该框架在SEED和SEED- iv数据集上的峰值分类准确率分别为94.63%和94.73%。此外,该框架还具有轻量级的优势,在现实世界的应用中具有巨大的潜力,包括医疗情绪监测和驾驶员情绪检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信