Xiaowen Wang, Marta Vittani, Ashley Bomin Lee, Philip Gade Knak, Hajime Hirase
{"title":"Genetic tools for imaging microcirculation via plasma labeling.","authors":"Xiaowen Wang, Marta Vittani, Ashley Bomin Lee, Philip Gade Knak, Hajime Hirase","doi":"10.1007/s12565-025-00858-x","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral microcirculation is a critical infrastructure for brain function, delivering energy substrates and clearing metabolic byproducts. Disruptions in vascular dynamics contribute to neurodegenerative diseases, stroke, and cognitive impairments. Traditional blood labeling methods for fluorescence imaging, such as fluorescent dextran injection, have advanced our understanding of microcirculation but are limited for long-term imaging. In this mini review, we introduce two recently developed molecular genetic techniques, achieved by recombinant adeno-associated virus (AAV)-mediated plasma label expression or genomic knock-in that enable stable, long-term microcirculation imaging. These AAV-mediated methods require only a single systemic injection, facilitating longitudinal imaging of microcirculation in mouse models of disease. We discuss the fundamental design concepts of these approaches and explore their potential applications in systems biology.</p>","PeriodicalId":7816,"journal":{"name":"Anatomical Science International","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Science International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12565-025-00858-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cerebral microcirculation is a critical infrastructure for brain function, delivering energy substrates and clearing metabolic byproducts. Disruptions in vascular dynamics contribute to neurodegenerative diseases, stroke, and cognitive impairments. Traditional blood labeling methods for fluorescence imaging, such as fluorescent dextran injection, have advanced our understanding of microcirculation but are limited for long-term imaging. In this mini review, we introduce two recently developed molecular genetic techniques, achieved by recombinant adeno-associated virus (AAV)-mediated plasma label expression or genomic knock-in that enable stable, long-term microcirculation imaging. These AAV-mediated methods require only a single systemic injection, facilitating longitudinal imaging of microcirculation in mouse models of disease. We discuss the fundamental design concepts of these approaches and explore their potential applications in systems biology.
期刊介绍:
The official English journal of the Japanese Association of Anatomists, Anatomical Science International (formerly titled Kaibogaku Zasshi) publishes original research articles dealing with morphological sciences.
Coverage in the journal includes molecular, cellular, histological and gross anatomical studies on humans and on normal and experimental animals, as well as functional morphological, biochemical, physiological and behavioral studies if they include morphological analysis.