Theaflavin-3,3'-digallate protects against myocardial ischemia/reperfusion injury and hypoxia/reoxygenation injury by activating the PI3K/Akt/mTOR pathway.

IF 2.9 4区 生物学 Q3 CELL BIOLOGY
Sha Wang, Huijun Wang
{"title":"Theaflavin-3,3'-digallate protects against myocardial ischemia/reperfusion injury and hypoxia/reoxygenation injury by activating the PI3K/Akt/mTOR pathway.","authors":"Sha Wang, Huijun Wang","doi":"10.1007/s10735-025-10453-z","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial ischemia followed by reperfusion triggers a range of pathological events, among which excessive autophagy plays a key role. Theaflavin-3,3'-digallate (TF3) is a functional polyphenol of black tea and is beneficial in the prevention or/and treatment of various diseases. Here, we explored the therapeutic effect of TF3 on myocardial ischemia/reperfusion (I/R) injury. I/R injury was induced in rats through ischemia (30 min) followed by reperfusion (24 h). TF3 was administered seven days before the I/R. Cardiac function was determined by echocardiography. Infarct size and apoptosis were assessed using TTC and TUNEL, respectively. H9C2 cardiomyocytes were treated with TF3 or/and PI3K inhibitor (LY294002) and then exposed to hypoxia/reoxygenation (H/R). Content levels of myocardial injury indicators in rat hearts and H9C2 cardiomyocytes were detected using corresponding kits. H9C2 cardiomyocyte apoptosis was evaluated by flow cytometry. Protein levels of autophagy, apoptosis, and PI3K/Akt/mTOR signaling in vivo and in vitro were detected using western blotting. TF3 reduced myocardial infarct size and decreased serum CK-MB, cTnT, and LDH content levels in rat model of myocardial I/R. TF3 reduced apoptosis and autophagy in I/R rat hearts and H9C2 cardiomyocytes by reducing Bax, cleaved caspase-3, Beclin-1, and LC3B levels, and elevating Bcl-2 and p62 levels. TF3 administration activated PI3K/Akt/mTOR signaling in I/R rat hearts and H9C2 cells. PI3K inhibitor LY294002 reversed the inhibitory effect of TF3 on H/R-induced apoptosis and autophagy in H9C2 cells. Overall, TF3 alleviates I/R-induced myocardial injury by reducing autophagy and apoptosis by activating PI3K/Akt/mTOR signaling.</p>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":"56 4","pages":"207"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10735-025-10453-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Myocardial ischemia followed by reperfusion triggers a range of pathological events, among which excessive autophagy plays a key role. Theaflavin-3,3'-digallate (TF3) is a functional polyphenol of black tea and is beneficial in the prevention or/and treatment of various diseases. Here, we explored the therapeutic effect of TF3 on myocardial ischemia/reperfusion (I/R) injury. I/R injury was induced in rats through ischemia (30 min) followed by reperfusion (24 h). TF3 was administered seven days before the I/R. Cardiac function was determined by echocardiography. Infarct size and apoptosis were assessed using TTC and TUNEL, respectively. H9C2 cardiomyocytes were treated with TF3 or/and PI3K inhibitor (LY294002) and then exposed to hypoxia/reoxygenation (H/R). Content levels of myocardial injury indicators in rat hearts and H9C2 cardiomyocytes were detected using corresponding kits. H9C2 cardiomyocyte apoptosis was evaluated by flow cytometry. Protein levels of autophagy, apoptosis, and PI3K/Akt/mTOR signaling in vivo and in vitro were detected using western blotting. TF3 reduced myocardial infarct size and decreased serum CK-MB, cTnT, and LDH content levels in rat model of myocardial I/R. TF3 reduced apoptosis and autophagy in I/R rat hearts and H9C2 cardiomyocytes by reducing Bax, cleaved caspase-3, Beclin-1, and LC3B levels, and elevating Bcl-2 and p62 levels. TF3 administration activated PI3K/Akt/mTOR signaling in I/R rat hearts and H9C2 cells. PI3K inhibitor LY294002 reversed the inhibitory effect of TF3 on H/R-induced apoptosis and autophagy in H9C2 cells. Overall, TF3 alleviates I/R-induced myocardial injury by reducing autophagy and apoptosis by activating PI3K/Akt/mTOR signaling.

茶黄素-3,3'-二肽通过激活PI3K/Akt/mTOR通路,对心肌缺血/再灌注损伤和缺氧/再氧化损伤具有保护作用。
心肌缺血再灌注引发一系列病理事件,其中过度自噬起关键作用。茶黄素-3,3'-二二酸酯(TF3)是红茶中的一种功能性多酚,对预防或/和治疗多种疾病有益。本研究探讨了TF3对心肌缺血再灌注(I/R)损伤的治疗作用。大鼠通过缺血(30min)再灌注(24h)诱导I/R损伤。在I/R前7天给予TF3。超声心动图测定心功能。采用TTC法和TUNEL法分别测定梗死面积和细胞凋亡。用TF3或/和PI3K抑制剂(LY294002)处理H9C2心肌细胞,然后暴露于缺氧/再氧化(H/R)。采用相应试剂盒检测大鼠心脏及H9C2心肌细胞心肌损伤指标含量水平。流式细胞术检测H9C2心肌细胞凋亡情况。western blotting检测小鼠体内和体外细胞自噬、凋亡和PI3K/Akt/mTOR信号通路的蛋白水平。在心肌I/R模型中,TF3可减小心肌梗死面积,降低血清CK-MB、cTnT和LDH含量。TF3通过降低Bax、cleaved caspase-3、Beclin-1和LC3B水平以及升高Bcl-2和p62水平,减少I/R大鼠心脏和H9C2心肌细胞的凋亡和自噬。TF3激活I/R大鼠心脏和H9C2细胞中PI3K/Akt/mTOR信号通路。PI3K抑制剂LY294002逆转了TF3对H/ r诱导的H9C2细胞凋亡和自噬的抑制作用。综上所述,TF3通过激活PI3K/Akt/mTOR信号通路,减少自噬和细胞凋亡,从而减轻I/ r诱导的心肌损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Histology
Journal of Molecular Histology 生物-细胞生物学
CiteScore
5.90
自引率
0.00%
发文量
68
审稿时长
1 months
期刊介绍: The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes. Major research themes of particular interest include: - Cell-Cell and Cell-Matrix Interactions; - Connective Tissues; - Development and Disease; - Neuroscience. Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance. The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信