Yingchun Wu, Kangjian Bao, Junxuan Liang, Zongxi Li, Yilin Shi, Renjie Tang, Kai Xu, Maoliang Wei, Zequn Chen, Jialing Jian, Ye Luo, Yiheng Tang, Qingyan Deng, Hao Dai, Chunlei Sun, Wei Zhang, Hongtao Lin, Kewei Zhang, Lan Li
{"title":"Photonic Interfaces: an Innovative Wearable Sensing Solution for Continuous Monitoring of Human Motion and Physiological Signals.","authors":"Yingchun Wu, Kangjian Bao, Junxuan Liang, Zongxi Li, Yilin Shi, Renjie Tang, Kai Xu, Maoliang Wei, Zequn Chen, Jialing Jian, Ye Luo, Yiheng Tang, Qingyan Deng, Hao Dai, Chunlei Sun, Wei Zhang, Hongtao Lin, Kewei Zhang, Lan Li","doi":"10.1002/smtd.202500727","DOIUrl":null,"url":null,"abstract":"<p><p>Flexible integrated photonic sensors are gaining prominence in intelligent wearable sensing due to their compact size, exceptional sensitivity, rapid response, robust immunity to electromagnetic interference, and the capability to enable parallel sensing through optical multiplexing. However, integrating these sensors for practical applications, such as monitoring human motions and physiological activities together, remains a significant challenge. Herein, it is presented an innovative fully packaged integrated photonic wearable sensor, which features a delicately designed flexible necklace-shaped microring resonator (MRR), along with a pair of grating couplers (GCs) coupled to a fiber array (FA). The necklace-shaped MRR is engineered to minimize waveguide sidewall-induced scattering loss, with a measured intrinsic quality factor (Q<sub>int</sub>) of 1.68 × 10<sup>5</sup>, ensuring highly sensitive and precise signal monitoring. GCs and FA enhance the seamless wearability of devices while maintaining superior sensitivity to monitor various human motions and physiological signs. These are further classified signals using machine learning algorithms, achieving an accuracy rate of 97%. This integrated photonic wearable sensor shows promise for human-machine interfaces, touch-responsive wearable monitors, and artificial skin, especially in environments susceptible to electromagnetic interference, such as intensive care units (ICUs) and spacecraft. This work significantly advances the field of smart wearable technology.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500727"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500727","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible integrated photonic sensors are gaining prominence in intelligent wearable sensing due to their compact size, exceptional sensitivity, rapid response, robust immunity to electromagnetic interference, and the capability to enable parallel sensing through optical multiplexing. However, integrating these sensors for practical applications, such as monitoring human motions and physiological activities together, remains a significant challenge. Herein, it is presented an innovative fully packaged integrated photonic wearable sensor, which features a delicately designed flexible necklace-shaped microring resonator (MRR), along with a pair of grating couplers (GCs) coupled to a fiber array (FA). The necklace-shaped MRR is engineered to minimize waveguide sidewall-induced scattering loss, with a measured intrinsic quality factor (Qint) of 1.68 × 105, ensuring highly sensitive and precise signal monitoring. GCs and FA enhance the seamless wearability of devices while maintaining superior sensitivity to monitor various human motions and physiological signs. These are further classified signals using machine learning algorithms, achieving an accuracy rate of 97%. This integrated photonic wearable sensor shows promise for human-machine interfaces, touch-responsive wearable monitors, and artificial skin, especially in environments susceptible to electromagnetic interference, such as intensive care units (ICUs) and spacecraft. This work significantly advances the field of smart wearable technology.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.