Ultrathin Polymer Electrolyte With Fast Ion Transport and Stable Interface for Practical Solid-state Lithium Metal Batteries.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuixin Xia, Xiangfeng Zhang, Zongyan Jiang, Xiaoyan Wu, Jodie A Yuwono, Chenrui Li, Cheng Wang, Gemeng Liang, Mingnan Li, Fangli Zhang, Yi Yu, Yong Jiang, Jianfeng Mao, Shiyou Zheng, Zaiping Guo
{"title":"Ultrathin Polymer Electrolyte With Fast Ion Transport and Stable Interface for Practical Solid-state Lithium Metal Batteries.","authors":"Shuixin Xia, Xiangfeng Zhang, Zongyan Jiang, Xiaoyan Wu, Jodie A Yuwono, Chenrui Li, Cheng Wang, Gemeng Liang, Mingnan Li, Fangli Zhang, Yi Yu, Yong Jiang, Jianfeng Mao, Shiyou Zheng, Zaiping Guo","doi":"10.1002/adma.202510376","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrathin solid-polymer-electrolytes (SPEs) are the most promising alternative substituting for the conventional liquid electrolyte to enable high-energy-density, safe lithium-metal-batteries (LMBs). Nevertheless, developing ultrathin SPEs with both high ionic conductivity, and strong Li dendrite retardant is still a significant challenge. Here a scalable fabrication of high-performance ultrathin (≈7.8 µm) polycarbonate-based electrolyte (UPCE) is proposed via electrolyte structural engineering, phase separation-derived poly(vinylidene fluoride-co-hexafluoropropylene) (PVH) porous scaffold, without use of additional liquid additives. The rational electrolyte structural modulation with 1-fluoro-4-(1-methylethenyl)benzene (FMB) enables a weakened Li<sup>+</sup>-polymer interaction due to weak Li<sup>+</sup> solvation with fluorine, benzene ring, facilitates the formation of LiF-rich solid-electrolyte-interphase on Li metal surface. As a result, the designed UPCE delivers a high ionic conductivity of 4.8 × 10<sup>-4</sup> S cm<sup>-1</sup>, an ultrahigh critical current density of 11.5 mA cm<sup>-2</sup> at 25 °C. The solid-state Li symmetric cell attains unprecedented ultralong cycling over 6000 h at 0.5 mA cm<sup>-2</sup>. Furthermore, the Li|LiCoO<sub>2</sub> cell cycles stably over 1500 cycles at a high operating voltage of 4.5 V, and the pouch cell can achieve a high energy density of 495 Wh kg<sup>-1</sup> excluding the packaging. This work offers a new pathway inspiring efforts to commercialize ultrathin SPEs for high-energy solid-state LMBs.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2510376"},"PeriodicalIF":27.4000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202510376","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrathin solid-polymer-electrolytes (SPEs) are the most promising alternative substituting for the conventional liquid electrolyte to enable high-energy-density, safe lithium-metal-batteries (LMBs). Nevertheless, developing ultrathin SPEs with both high ionic conductivity, and strong Li dendrite retardant is still a significant challenge. Here a scalable fabrication of high-performance ultrathin (≈7.8 µm) polycarbonate-based electrolyte (UPCE) is proposed via electrolyte structural engineering, phase separation-derived poly(vinylidene fluoride-co-hexafluoropropylene) (PVH) porous scaffold, without use of additional liquid additives. The rational electrolyte structural modulation with 1-fluoro-4-(1-methylethenyl)benzene (FMB) enables a weakened Li+-polymer interaction due to weak Li+ solvation with fluorine, benzene ring, facilitates the formation of LiF-rich solid-electrolyte-interphase on Li metal surface. As a result, the designed UPCE delivers a high ionic conductivity of 4.8 × 10-4 S cm-1, an ultrahigh critical current density of 11.5 mA cm-2 at 25 °C. The solid-state Li symmetric cell attains unprecedented ultralong cycling over 6000 h at 0.5 mA cm-2. Furthermore, the Li|LiCoO2 cell cycles stably over 1500 cycles at a high operating voltage of 4.5 V, and the pouch cell can achieve a high energy density of 495 Wh kg-1 excluding the packaging. This work offers a new pathway inspiring efforts to commercialize ultrathin SPEs for high-energy solid-state LMBs.

具有快速离子传输和稳定界面的超薄聚合物电解质用于实用固态锂金属电池。
超薄固体聚合物电解质(spe)是传统液体电解质最有前途的替代品,可以实现高能量密度、安全的锂金属电池(lmb)。然而,开发既具有高离子电导率又具有强Li枝晶阻燃性的超薄spe仍然是一个重大挑战。本文提出了一种高性能超薄(≈7.8 μ m)聚碳酸酯基电解质(UPCE)的可扩展制造方法,通过电解质结构工程,相分离衍生的聚偏氟乙烯-共六氟丙烯(PVH)多孔支架,无需使用额外的液体添加剂。1-氟-4-(1-甲基乙烯基)苯(FMB)合理调制电解质结构,使Li+与氟、苯环的弱溶剂化减弱了Li+与聚合物的相互作用,有利于在Li金属表面形成富lif的固体电解质界面相。因此,设计的UPCE提供了4.8 × 10-4 S cm-1的高离子电导率,在25°C下的超高临界电流密度为11.5 mA cm-2。固态锂对称电池在0.5 mA cm-2下实现了超过6000小时的超长循环。此外,Li|LiCoO2电池在4.5 V的高工作电压下稳定地循环超过1500次,而袋装电池可以实现495wh kg-1的高能量密度。这项工作为高能固态lmb超薄spe的商业化提供了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信