Gahyeon Kim, Dukwon Lee, Ji Hun Kim, Seong Do Kim, Hongki Kim, Jae Heon Kim, Sung Sun Yim, Soo-Jin Yeom, Jay D Keasling, Byung-Kwan Cho
{"title":"Engineering modular enzyme assembly: synthetic interface strategies for natural products biosynthesis applications.","authors":"Gahyeon Kim, Dukwon Lee, Ji Hun Kim, Seong Do Kim, Hongki Kim, Jae Heon Kim, Sung Sun Yim, Soo-Jin Yeom, Jay D Keasling, Byung-Kwan Cho","doi":"10.1039/d5np00027k","DOIUrl":null,"url":null,"abstract":"<p><p>Covering: 2020 to 2025Natural products remain indispensable sources of therapeutic and bioactive compounds, yet traditional discovery strategies are constrained by compound rediscovery. Modular biosynthetic enzymes, such as type I polyketide synthases (PKSs) and type A non-ribosomal peptide synthetases (NRPSs), offer promising platforms for combinatorial biosynthesis owing to their programmable architectures. However, practical implementation is frequently limited by inter-modular incompatibility and domain-specific interactions. This review highlights recent advances in modular enzyme assembly enabled by synthetic interfaces-including cognate docking domains, synthetic coiled-coils, SpyTag/SpyCatcher, and split inteins-which function as orthogonal, standardized connectors to facilitate post-translational complex formation. These interfaces support rational investigations into substrate specificity, module compatibility, and pathway derivatization as well as general enzyme clustering applications beyond PKS and NRPS systems. Synthetic interfaces can be integrated with computational tools to support a more systematic and scalable framework for modular enzyme engineering by providing predictive insights into domain compatibility and interface design. These approaches within iterative design-build-test-learn workflows can accelerate the programmable assembly of biosynthetic systems and expand the accessible chemical space for natural products.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Reports","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5np00027k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Covering: 2020 to 2025Natural products remain indispensable sources of therapeutic and bioactive compounds, yet traditional discovery strategies are constrained by compound rediscovery. Modular biosynthetic enzymes, such as type I polyketide synthases (PKSs) and type A non-ribosomal peptide synthetases (NRPSs), offer promising platforms for combinatorial biosynthesis owing to their programmable architectures. However, practical implementation is frequently limited by inter-modular incompatibility and domain-specific interactions. This review highlights recent advances in modular enzyme assembly enabled by synthetic interfaces-including cognate docking domains, synthetic coiled-coils, SpyTag/SpyCatcher, and split inteins-which function as orthogonal, standardized connectors to facilitate post-translational complex formation. These interfaces support rational investigations into substrate specificity, module compatibility, and pathway derivatization as well as general enzyme clustering applications beyond PKS and NRPS systems. Synthetic interfaces can be integrated with computational tools to support a more systematic and scalable framework for modular enzyme engineering by providing predictive insights into domain compatibility and interface design. These approaches within iterative design-build-test-learn workflows can accelerate the programmable assembly of biosynthetic systems and expand the accessible chemical space for natural products.
期刊介绍:
Natural Product Reports (NPR) serves as a pivotal critical review journal propelling advancements in all facets of natural products research, encompassing isolation, structural and stereochemical determination, biosynthesis, biological activity, and synthesis.
With a broad scope, NPR extends its influence into the wider bioinorganic, bioorganic, and chemical biology communities. Covering areas such as enzymology, nucleic acids, genetics, chemical ecology, carbohydrates, primary and secondary metabolism, and analytical techniques, the journal provides insightful articles focusing on key developments shaping the field, rather than offering exhaustive overviews of all results.
NPR encourages authors to infuse their perspectives on developments, trends, and future directions, fostering a dynamic exchange of ideas within the natural products research community.