Tobias Zott, Michael Wolf, Günter Plessl-Walder, Heinz Regele, Michael Bergmann, Samuel M Meier-Menches, Christopher Gerner, Gerd R Silberhumer, Andrea Bileck
{"title":"Proteomic Analysis of FFPE Tissue Samples Identifies Potential Molecular Mechanisms Mediating Resistance to Radiotherapy in Rectal Cancer.","authors":"Tobias Zott, Michael Wolf, Günter Plessl-Walder, Heinz Regele, Michael Bergmann, Samuel M Meier-Menches, Christopher Gerner, Gerd R Silberhumer, Andrea Bileck","doi":"10.1021/acs.jproteome.5c00114","DOIUrl":null,"url":null,"abstract":"<p><p>Chemoradiation prior to surgery in locally advanced rectal cancer is the current standard therapy but is not effective in all rectal cancer patients. Prognostic markers supporting patient stratification with respect to clinical response would therefore be desirable. The aim of this study was to investigate pathophysiological mechanisms underlying radioresistance and to identify potential prognostic markers by comparative proteome profiling. Therefore, formalin fixed paraffin-embedded tissue (FFPE) samples from rectal tumors (<i>n</i> = 50) and normal control tissue (<i>n</i> = 39) of nonresponders and responders to neoadjuvant chemoradiation were analyzed. As a result, 1685 robustly identified proteins were further evaluated. Comparing tumor with corresponding control samples revealed 221 differentially expressed proteins (FDR < 0.05) with FTL, PCOLCE, and RCN3 being most striking in tumor tissue. CEACAM 1, 5, and 6, as well as MCM protein complex components, were significantly up-regulated in tumor tissue of nonresponders. The autophagic activity-related and DNA damage repair proteins TOM1, CAPNS1, TP53BP1, HS1BP3, as well as COTL1 and DCPS, discriminated non- and nearly complete from complete responders. In the tumor-surrounding tissue of nonresponders, the innate immune response-suppressing protein CD55 was found specifically up-regulated. These proteins may serve as prognostic markers and potential therapeutic targets, requiring further validation in prospective studies.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.5c00114","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Chemoradiation prior to surgery in locally advanced rectal cancer is the current standard therapy but is not effective in all rectal cancer patients. Prognostic markers supporting patient stratification with respect to clinical response would therefore be desirable. The aim of this study was to investigate pathophysiological mechanisms underlying radioresistance and to identify potential prognostic markers by comparative proteome profiling. Therefore, formalin fixed paraffin-embedded tissue (FFPE) samples from rectal tumors (n = 50) and normal control tissue (n = 39) of nonresponders and responders to neoadjuvant chemoradiation were analyzed. As a result, 1685 robustly identified proteins were further evaluated. Comparing tumor with corresponding control samples revealed 221 differentially expressed proteins (FDR < 0.05) with FTL, PCOLCE, and RCN3 being most striking in tumor tissue. CEACAM 1, 5, and 6, as well as MCM protein complex components, were significantly up-regulated in tumor tissue of nonresponders. The autophagic activity-related and DNA damage repair proteins TOM1, CAPNS1, TP53BP1, HS1BP3, as well as COTL1 and DCPS, discriminated non- and nearly complete from complete responders. In the tumor-surrounding tissue of nonresponders, the innate immune response-suppressing protein CD55 was found specifically up-regulated. These proteins may serve as prognostic markers and potential therapeutic targets, requiring further validation in prospective studies.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".