G G Simpson, J M Quintana, J E Carrothers, F Jiang, S A Walker, C Cho, R Weissleder, M A Miller, T S C Ng
{"title":"Fluorescent PSMA-Targeted Radiotheranostic Compounds for Multiscale Imaging.","authors":"G G Simpson, J M Quintana, J E Carrothers, F Jiang, S A Walker, C Cho, R Weissleder, M A Miller, T S C Ng","doi":"10.1021/acs.bioconjchem.5c00139","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate-specific membrane antigen (PSMA) is a promising theranostic target. Different PSMA-targeting small molecule ligands have been FDA-approved or are in development, yet their biological fate at the single-cell level is often unknown. An improved understanding of the cellular distribution of these probes will confer insights into their microdosimetry and guide next-generation theranostic probe development. To enable detailed single-cell pharmacokinetics, it is desirable to have fluorescence affinity ligands that preserve the properties of the native agent. Building upon the structure of the FDA-approved PSMA-617, we synthesized a panel of fluorescent analogs and evaluated their in vitro and in vivo properties. We described a facile solid-phase-based synthesis and optimized the synthesis of the crucial urea pharmacophore. We identified two compounds, PSMA-Lys-DOTA-Cy680 (<b>3</b>) and PSMA-Lys-DOTA-AF647 (<b>4</b>), with similar PSMA binding affinities compared to the parent compound and robust optical imaging properties. Tissue and cellular biodistribution data from imaging can populate microdosimetric and systemic modeling to provide potential insights into future radiopharmaceutical therapy design.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":"1448-1460"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.5c00139","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Prostate-specific membrane antigen (PSMA) is a promising theranostic target. Different PSMA-targeting small molecule ligands have been FDA-approved or are in development, yet their biological fate at the single-cell level is often unknown. An improved understanding of the cellular distribution of these probes will confer insights into their microdosimetry and guide next-generation theranostic probe development. To enable detailed single-cell pharmacokinetics, it is desirable to have fluorescence affinity ligands that preserve the properties of the native agent. Building upon the structure of the FDA-approved PSMA-617, we synthesized a panel of fluorescent analogs and evaluated their in vitro and in vivo properties. We described a facile solid-phase-based synthesis and optimized the synthesis of the crucial urea pharmacophore. We identified two compounds, PSMA-Lys-DOTA-Cy680 (3) and PSMA-Lys-DOTA-AF647 (4), with similar PSMA binding affinities compared to the parent compound and robust optical imaging properties. Tissue and cellular biodistribution data from imaging can populate microdosimetric and systemic modeling to provide potential insights into future radiopharmaceutical therapy design.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.