Deciphering Interfacial Dzyaloshinskii–Moriya Interaction in Transition-Metal Dichalcogenide/Permalloy Heterostructures by Brillouin Light Scattering and First-Principles Calculations

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-06-26 DOI:10.1021/acsnano.4c17187
Sreya Pal, Md Nur Hasan, Himanshu Bangar, Nastaran Salehi, Sayan Mathur, Manuel Pereiro, Patrik Thunström, Pranaba Kishor Muduli, Debjani Karmakar and Anjan Barman*, 
{"title":"Deciphering Interfacial Dzyaloshinskii–Moriya Interaction in Transition-Metal Dichalcogenide/Permalloy Heterostructures by Brillouin Light Scattering and First-Principles Calculations","authors":"Sreya Pal,&nbsp;Md Nur Hasan,&nbsp;Himanshu Bangar,&nbsp;Nastaran Salehi,&nbsp;Sayan Mathur,&nbsp;Manuel Pereiro,&nbsp;Patrik Thunström,&nbsp;Pranaba Kishor Muduli,&nbsp;Debjani Karmakar and Anjan Barman*,&nbsp;","doi":"10.1021/acsnano.4c17187","DOIUrl":null,"url":null,"abstract":"<p >Development of energy-efficient spintronics demands spin–orbit effects and chiral spin textures. The latter requires the Dzyaloshinskii–Moriya interaction (DMI) and its interplay with Heisenberg exchange. Understanding the relative strengths of Heisenberg exchange and interfacial DMI (iDMI) and its scaling with spin–orbit coupling (SOC) is key to stabilizing chiral spin textures in nonmagnet/ferromagnet heterostructures. Here, Brillouin light scattering (BLS) spectroscopy is employed to determine the iDMI and Heisenberg exchange stiffness constants for large-area chemical vapor-deposited monolayer two-dimensional (2D) transition-metal dichalcogenides (TMDs) (MoS<sub>2</sub>, MoSe<sub>2</sub>, WS<sub>2</sub>, and WSe<sub>2</sub>) interfaced with permalloy (Py) thin films. Both symmetric and antisymmetric exchange interactions exhibited a nearly identical dependence on SOC strength for all four interfaces. The origin of the interfacial exchange interaction is underpinned with the help of first-principles-based analysis of TMD/Py interfaces, in which the theoretically calculated intersite exchange parameters and the respective adiabatic magnon spectra reproduce the experimental trend. This study deciphers the origin of iDMI in TMD/ferromagnet heterostructures and their quantification by BLS, highlighting a possible route for the stabilization of chiral spin textures in such systems.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 26","pages":"23564–23574"},"PeriodicalIF":16.0000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c17187","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Development of energy-efficient spintronics demands spin–orbit effects and chiral spin textures. The latter requires the Dzyaloshinskii–Moriya interaction (DMI) and its interplay with Heisenberg exchange. Understanding the relative strengths of Heisenberg exchange and interfacial DMI (iDMI) and its scaling with spin–orbit coupling (SOC) is key to stabilizing chiral spin textures in nonmagnet/ferromagnet heterostructures. Here, Brillouin light scattering (BLS) spectroscopy is employed to determine the iDMI and Heisenberg exchange stiffness constants for large-area chemical vapor-deposited monolayer two-dimensional (2D) transition-metal dichalcogenides (TMDs) (MoS2, MoSe2, WS2, and WSe2) interfaced with permalloy (Py) thin films. Both symmetric and antisymmetric exchange interactions exhibited a nearly identical dependence on SOC strength for all four interfaces. The origin of the interfacial exchange interaction is underpinned with the help of first-principles-based analysis of TMD/Py interfaces, in which the theoretically calculated intersite exchange parameters and the respective adiabatic magnon spectra reproduce the experimental trend. This study deciphers the origin of iDMI in TMD/ferromagnet heterostructures and their quantification by BLS, highlighting a possible route for the stabilization of chiral spin textures in such systems.

Abstract Image

用布里渊光散射和第一性原理计算解析过渡金属二硫族化物/坡莫合金异质结构中的界面Dzyaloshinskii-Moriya相互作用。
节能自旋电子学的发展需要自旋轨道效应和手性自旋织构。后者需要Dzyaloshinskii-Moriya相互作用(DMI)及其与海森堡交换的相互作用。了解海森堡交换和界面DMI (iDMI)的相对强度及其自旋轨道耦合(SOC)的标度是稳定非磁/铁磁异质结构中手性自旋织构的关键。本文采用布里渊光散射(BLS)光谱法测定了大面积化学气相沉积单层二维过渡金属二硫族化合物(MoS2、MoSe2、WS2和WSe2)与坡莫合金(Py)薄膜界面的iDMI和Heisenberg交换刚度常数。对称和反对称交换相互作用对所有四种接口的SOC强度都表现出几乎相同的依赖性。基于第一性原理的TMD/Py界面分析支持了界面交换相互作用的起源,其中理论计算的界面交换参数和各自的绝热磁振子谱再现了实验趋势。本研究揭示了TMD/铁磁体异质结构中iDMI的来源,并通过BLS对其进行了量化,为这类体系中手性自旋织构的稳定提供了一条可能的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信