Poly(lactic-co-glycolic acid) Microspheres Encapsulating a Viral-Binding Protein, PmRab7, for Preventing White Spot Syndrome Virus in Shrimp.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ruttanaporn Kriangsaksri, Suparat Taengchaiyaphum, Pattaree Payomhom, Dararat Thaiue, Ornchuma Itsathitphaisarn, Kallaya Sritunyalucksana, Kanlaya Prapainop Katewongsa
{"title":"Poly(lactic-<i>co</i>-glycolic acid) Microspheres Encapsulating a Viral-Binding Protein, PmRab7, for Preventing White Spot Syndrome Virus in Shrimp.","authors":"Ruttanaporn Kriangsaksri, Suparat Taengchaiyaphum, Pattaree Payomhom, Dararat Thaiue, Ornchuma Itsathitphaisarn, Kallaya Sritunyalucksana, Kanlaya Prapainop Katewongsa","doi":"10.1021/acsbiomaterials.5c00928","DOIUrl":null,"url":null,"abstract":"<p><p>White spot syndrome virus (WSSV) is one of the most devastating pathogens affecting shrimp. Within a short time, it leads to a hundred percent mortality rate, which causes substantial economic losses. PmRab7 has been reported to bind to the envelope protein of WSSV, VP28, resulting in a reduction of viral replication. In order to apply PmRab7 in shrimp feed, the development of delivery systems is crucial. Poly(lactic-<i>co</i>-glycolic acid) (PLGA) is a biodegradable polymer extensively studied for drug delivery in the form of nanoparticles or microspheres (MSs). Despite its potential, PLGA has not been previously reported for antiviral use in shrimp. This study is the first to demonstrate the potential use of PLGA and chitosan-coated PLGA (PLGA/CS) MSs for the delivery of PmRab7 in shrimp. Both PLGA and PLGA/CS were optimized and characterized to allow for a sustained release of encapsulated PmRab7. Initial in vitro and in vivo evaluations demonstrated that both MSs are safe for use in shrimp, can sustain the release of PmRab7, and enhance its antiviral activity as shown by a decrease in the mortality rate in shrimp. The development of these MSs has the potential to significantly enhance disease control in shrimp aquaculture, leading to more effective and sustainable practices that will ultimately bolster the industry's growth and long-term stability.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00928","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

White spot syndrome virus (WSSV) is one of the most devastating pathogens affecting shrimp. Within a short time, it leads to a hundred percent mortality rate, which causes substantial economic losses. PmRab7 has been reported to bind to the envelope protein of WSSV, VP28, resulting in a reduction of viral replication. In order to apply PmRab7 in shrimp feed, the development of delivery systems is crucial. Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable polymer extensively studied for drug delivery in the form of nanoparticles or microspheres (MSs). Despite its potential, PLGA has not been previously reported for antiviral use in shrimp. This study is the first to demonstrate the potential use of PLGA and chitosan-coated PLGA (PLGA/CS) MSs for the delivery of PmRab7 in shrimp. Both PLGA and PLGA/CS were optimized and characterized to allow for a sustained release of encapsulated PmRab7. Initial in vitro and in vivo evaluations demonstrated that both MSs are safe for use in shrimp, can sustain the release of PmRab7, and enhance its antiviral activity as shown by a decrease in the mortality rate in shrimp. The development of these MSs has the potential to significantly enhance disease control in shrimp aquaculture, leading to more effective and sustainable practices that will ultimately bolster the industry's growth and long-term stability.

包封病毒结合蛋白PmRab7的聚乳酸-羟基乙酸微球预防虾白斑综合征病毒
白斑综合征病毒(WSSV)是对虾最具破坏性的病原体之一。在短时间内,它会导致百分之百的死亡率,造成巨大的经济损失。据报道,PmRab7与WSSV的包膜蛋白VP28结合,导致病毒复制减少。为了使PmRab7在对虾饲料中得到应用,其输送系统的开发至关重要。聚乳酸-羟基乙酸(PLGA)是一种可生物降解的聚合物,被广泛研究用于以纳米颗粒或微球(ms)的形式给药。尽管PLGA具有潜在的抗病毒作用,但之前还没有报道将其用于对虾。这项研究首次证明了PLGA和壳聚糖包被PLGA (PLGA/CS) MSs在虾体内递送PmRab7的潜力。对PLGA和PLGA/CS进行了优化和表征,以保证包封的PmRab7的缓释。初步的体外和体内评价表明,这两种MSs在对虾中使用是安全的,可以维持PmRab7的释放,并增强其抗病毒活性,这表明虾的死亡率降低。这些MSs的发展有可能显著加强对虾养殖中的疾病控制,导致更有效和可持续的做法,最终将促进该行业的增长和长期稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信