Sopon Nuchpun, Wid Mekseriwattana, Anna Solé-Porta, Bodee Nutho, Onrapak Reamtong, Patompon Wongtrakoongate, Anna Roig, Kanlaya Prapainop Katewongsa
{"title":"Uptake Mechanism of Riboflavin-Functionalized Superparamagnetic Iron Oxide Nanoparticles in Triple-Negative Breast Cancer Cells.","authors":"Sopon Nuchpun, Wid Mekseriwattana, Anna Solé-Porta, Bodee Nutho, Onrapak Reamtong, Patompon Wongtrakoongate, Anna Roig, Kanlaya Prapainop Katewongsa","doi":"10.1021/acsabm.5c00649","DOIUrl":null,"url":null,"abstract":"<p><p>Superparamagnetic iron oxide nanoparticles (SPIONs), which are widely used as contrast agents in magnetic resonance imaging and as magnetic hyperthermia agents in cancer therapy, can be functionalized with biological molecules to enhance their specificity, stability, and cellular interaction. Riboflavin (Rf), a crucial biomolecule in cellular metabolism, is a potentially effective targeting moiety that can be selectively transported via riboflavin transporters (RFVTs), which are often overexpressed in cancer cells, including breast cancer cells. Here, we synthesize Rf-functionalized SPIONs (Rf-SPIONs) with high colloidal stability and stronger cellular interaction with breast cancer cells (MCF-7, and MDA-MB-231) than with normal breast cells (MCF-10A). Notably, the uptake is highest in triple-negative breast cancer cells (MDA-MB-231), a highly aggressive and treatment-resistant subtype. A mechanistic study revealed that RFVT is expressed in breast cancer cells and plays an important role in Rf-SPIONs uptake via the RFVT-mediated pathway. These findings identify riboflavin-functionalized nanoparticles as a promising platform for targeted delivery, diagnostic imaging, and cancer therapeutics. Rf-based nanomaterials could also pave the way for precision targeting of Rf-dependent metabolic pathways in cancer and other diseases.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"6088-6099"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12284854/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs), which are widely used as contrast agents in magnetic resonance imaging and as magnetic hyperthermia agents in cancer therapy, can be functionalized with biological molecules to enhance their specificity, stability, and cellular interaction. Riboflavin (Rf), a crucial biomolecule in cellular metabolism, is a potentially effective targeting moiety that can be selectively transported via riboflavin transporters (RFVTs), which are often overexpressed in cancer cells, including breast cancer cells. Here, we synthesize Rf-functionalized SPIONs (Rf-SPIONs) with high colloidal stability and stronger cellular interaction with breast cancer cells (MCF-7, and MDA-MB-231) than with normal breast cells (MCF-10A). Notably, the uptake is highest in triple-negative breast cancer cells (MDA-MB-231), a highly aggressive and treatment-resistant subtype. A mechanistic study revealed that RFVT is expressed in breast cancer cells and plays an important role in Rf-SPIONs uptake via the RFVT-mediated pathway. These findings identify riboflavin-functionalized nanoparticles as a promising platform for targeted delivery, diagnostic imaging, and cancer therapeutics. Rf-based nanomaterials could also pave the way for precision targeting of Rf-dependent metabolic pathways in cancer and other diseases.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.