Spider Silk-Inspired Flexible Biomacromolecular Composite with Electrical and Thermal Functionality from Mesoporous Bamboo

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tianfang Zhang , Luxi He , Xiangyu Zhao , Wenrui Xie , Zhengbin He , Zhenyu Wang , Songlin Yi
{"title":"Spider Silk-Inspired Flexible Biomacromolecular Composite with Electrical and Thermal Functionality from Mesoporous Bamboo","authors":"Tianfang Zhang ,&nbsp;Luxi He ,&nbsp;Xiangyu Zhao ,&nbsp;Wenrui Xie ,&nbsp;Zhengbin He ,&nbsp;Zhenyu Wang ,&nbsp;Songlin Yi","doi":"10.1021/acs.biomac.5c00537","DOIUrl":null,"url":null,"abstract":"<div><div>Inspired by the hierarchical architecture of spider silk, this study introduces a biobased macromolecular composite that combines mechanical flexibility, thermal regulation, and electrical performance. The composite is constructed using a delignified bamboo scaffold, which acts as a naturally aligned, mesoporous framework of cellulose-based macromolecules, integrated with carboxylated multiwalled carbon nanotubes and poly (vinyl alcohol). This design yields a mechanically resilient macromolecular network with stable electrical conductivity under cyclic deformation. The composite achieves enhanced thermal conductivity and demonstrates a 7.29% increase in ice-melting efficiency. Importantly, under prolonged thermal exposure, the composite undergoes thermal degradation, forming a protective carbonaceous char layer that suppresses combustion and reduces CO<sub>2</sub> and particulate emissions by 37.2 and 84.6%, respectively. The intrinsic mesoporous structure of bamboo provides an ultralight yet robust template, maintaining mechanical integrity even under cyclic stress. Additionally, the conductive nanomaterials improve interfacial properties, making this composite a promising candidate for durable, biobased flexible electronics and thermally stable structural applications. These multifunctional characteristics highlight the potential of natural macromolecular architectures in developing sustainable, biodegradable, and high-performance polymeric systems for flexible electronics and thermally stable applications.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (179KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 7","pages":"Pages 4544-4557"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1525779725003046","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by the hierarchical architecture of spider silk, this study introduces a biobased macromolecular composite that combines mechanical flexibility, thermal regulation, and electrical performance. The composite is constructed using a delignified bamboo scaffold, which acts as a naturally aligned, mesoporous framework of cellulose-based macromolecules, integrated with carboxylated multiwalled carbon nanotubes and poly (vinyl alcohol). This design yields a mechanically resilient macromolecular network with stable electrical conductivity under cyclic deformation. The composite achieves enhanced thermal conductivity and demonstrates a 7.29% increase in ice-melting efficiency. Importantly, under prolonged thermal exposure, the composite undergoes thermal degradation, forming a protective carbonaceous char layer that suppresses combustion and reduces CO2 and particulate emissions by 37.2 and 84.6%, respectively. The intrinsic mesoporous structure of bamboo provides an ultralight yet robust template, maintaining mechanical integrity even under cyclic stress. Additionally, the conductive nanomaterials improve interfacial properties, making this composite a promising candidate for durable, biobased flexible electronics and thermally stable structural applications. These multifunctional characteristics highlight the potential of natural macromolecular architectures in developing sustainable, biodegradable, and high-performance polymeric systems for flexible electronics and thermally stable applications.
  1. Download: Download high-res image (179KB)
  2. Download: Download full-size image
由介孔竹子制成的具有电和热功能的蜘蛛丝启发的柔性生物大分子复合材料。
受蛛丝分层结构的启发,本研究引入了一种生物基大分子复合材料,它结合了机械灵活性、热调节和电气性能。这种复合材料是用去木质素的竹支架构建的,它作为一种自然排列的纤维素基大分子介孔框架,与羧化多壁碳纳米管和聚乙烯醇结合在一起。这种设计产生了具有机械弹性的大分子网络,在循环变形下具有稳定的导电性。该复合材料的导热性得到增强,融冰效率提高了7.29%。重要的是,在长时间的热暴露下,复合材料会发生热降解,形成一个保护性的碳质炭层,抑制燃烧,分别减少37.2和84.6%的二氧化碳和颗粒排放。竹子固有的介孔结构提供了一个超轻而坚固的模板,即使在循环应力下也能保持机械完整性。此外,导电纳米材料改善了界面性能,使这种复合材料成为耐用、生物基柔性电子产品和热稳定结构应用的有希望的候选者。这些多功能特性突出了天然大分子结构在开发可持续、可生物降解和高性能聚合物系统方面的潜力,这些系统用于柔性电子和热稳定应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信