Olivia E Coer, Brandy L Davidson, Brycelyn M Boardman, Gretchen M Peters
{"title":"Modulating Thermal Stability and Flexibility in Chitosan Films with Neutral Polyol-Boric Acid Complexes.","authors":"Olivia E Coer, Brandy L Davidson, Brycelyn M Boardman, Gretchen M Peters","doi":"10.1021/acs.biomac.5c00177","DOIUrl":null,"url":null,"abstract":"<p><p>The incorporation of boron into bioplastics offers the potential for diverse applications, with the structure-property relationship between polymer chains and boron species being the key for design. Here, we report the ability to modulate the flexibility and thermal stability of chitosan materials by varying the concentrations of erythritol and the molar equivalents of boric acid. Erythritol and boric acid form neutral complexes that alter the hydrogen-bonding face of erythritol while maintaining free diol units. 1D and 2D NMR experiments indicate preferential formation of the 1,3-isomer (85%) with minor amounts of 1,2- and 2,3-isomers. Structural, thermal, mechanical, and morphological characterization was performed using ATR-FTIR, TGA and DSC, DMA, and SEM, respectively. Molecular-level interactions of the complexes and d-glucosamine, the repeat unit of chitosan, showed increased aggregation and hydrogen-bonding interactions of the free diol units with the NH of d-glucosamine, supporting the trends in flexibility observed in the polymer system.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c00177","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The incorporation of boron into bioplastics offers the potential for diverse applications, with the structure-property relationship between polymer chains and boron species being the key for design. Here, we report the ability to modulate the flexibility and thermal stability of chitosan materials by varying the concentrations of erythritol and the molar equivalents of boric acid. Erythritol and boric acid form neutral complexes that alter the hydrogen-bonding face of erythritol while maintaining free diol units. 1D and 2D NMR experiments indicate preferential formation of the 1,3-isomer (85%) with minor amounts of 1,2- and 2,3-isomers. Structural, thermal, mechanical, and morphological characterization was performed using ATR-FTIR, TGA and DSC, DMA, and SEM, respectively. Molecular-level interactions of the complexes and d-glucosamine, the repeat unit of chitosan, showed increased aggregation and hydrogen-bonding interactions of the free diol units with the NH of d-glucosamine, supporting the trends in flexibility observed in the polymer system.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.