Johann Gout , Menar Ekizce , Elodie Roger , Alexander Kleger
{"title":"Pancreatic organoids as cancer avatars for true personalized medicine","authors":"Johann Gout , Menar Ekizce , Elodie Roger , Alexander Kleger","doi":"10.1016/j.addr.2025.115642","DOIUrl":null,"url":null,"abstract":"<div><div>Pancreatic ductal adenocarcinoma (PDAC) is a lethal solid malignancy, rapidly progressing and highly therapeutic resistant, as reflected by its very low five-year overall survival. Despite significant advancements in our understanding of its pathobiology and the molecular mechanisms driving its tumorigenesis, therapeutic options remain limited and yield only modest clinical responses. PDAC is characterized by a high genetic inter and intratumoral heterogeneity that shapes its mutational landscape and affects its response to therapies. Facing the limitations of existing preclinical models, the development of personalized medicine in PDAC has been hampered. Translational pancreatic cancer research has been accelerated by the emergence of patient-derived organoids (PDOs), <em>in vitro</em> models faithfully preserving genetic, transcriptomic, proteomic, and epigenetic features and heterogeneity of the parental tumors. This review presents how PDO models can revolutionize precision oncology in pancreatic cancer by prognosticating tumor response and thereby, assist clinical decision-making. Their potential as a preclinical platform for biomarker and drug discovery, as well as future directions for enhancing the therapy response predictive power of organoid-based systems are also discussed.</div></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"224 ","pages":"Article 115642"},"PeriodicalIF":15.2000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced drug delivery reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169409X25001279","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal solid malignancy, rapidly progressing and highly therapeutic resistant, as reflected by its very low five-year overall survival. Despite significant advancements in our understanding of its pathobiology and the molecular mechanisms driving its tumorigenesis, therapeutic options remain limited and yield only modest clinical responses. PDAC is characterized by a high genetic inter and intratumoral heterogeneity that shapes its mutational landscape and affects its response to therapies. Facing the limitations of existing preclinical models, the development of personalized medicine in PDAC has been hampered. Translational pancreatic cancer research has been accelerated by the emergence of patient-derived organoids (PDOs), in vitro models faithfully preserving genetic, transcriptomic, proteomic, and epigenetic features and heterogeneity of the parental tumors. This review presents how PDO models can revolutionize precision oncology in pancreatic cancer by prognosticating tumor response and thereby, assist clinical decision-making. Their potential as a preclinical platform for biomarker and drug discovery, as well as future directions for enhancing the therapy response predictive power of organoid-based systems are also discussed.
期刊介绍:
The aim of the Journal is to provide a forum for the critical analysis of advanced drug and gene delivery systems and their applications in human and veterinary medicine. The Journal has a broad scope, covering the key issues for effective drug and gene delivery, from administration to site-specific delivery.
In general, the Journal publishes review articles in a Theme Issue format. Each Theme Issue provides a comprehensive and critical examination of current and emerging research on the design and development of advanced drug and gene delivery systems and their application to experimental and clinical therapeutics. The goal is to illustrate the pivotal role of a multidisciplinary approach to modern drug delivery, encompassing the application of sound biological and physicochemical principles to the engineering of drug delivery systems to meet the therapeutic need at hand. Importantly the Editorial Team of ADDR asks that the authors effectively window the extensive volume of literature, pick the important contributions and explain their importance, produce a forward looking identification of the challenges facing the field and produce a Conclusions section with expert recommendations to address the issues.