{"title":"CFD study on combustion and emissions characteristics of methane-hydrogen co-firing in an EV burner","authors":"Sanghyeon Lee, Jaebin Lee, Byeongmin Ahn, Dowon Kang, Jeongjae Hwang, Yeseul Park, Minsung Choi","doi":"10.1016/j.csite.2025.106596","DOIUrl":null,"url":null,"abstract":"Considerable efforts are being made worldwide to convert carbon-free fuels from gas turbines in the power generation sector while focusing on reducing greenhouse gases. In this study, CFD analysis was conducted to investigate the effects of methane–hydrogen co-firing on the combustion characteristics of a gas turbine combustor for power. This study aims to explore the combustion and emissions characteristics under various operating conditions, such as different co-firing and equivalence ratios. As the hydrogen co-firing ratio increased from 0% to 60%, the flame became increasingly attached to the burner, with the OH reaction zone shifting upstream by up to 80 mm, suggesting a higher risk of flashback owing to hydrogen. The emission characteristics showed an increase in NO<ce:inf loc=\"post\">x</ce:inf>, reaching approximately 140 ppm at an equivalence ratio of 0.7, as observed in both the experiments and CFD. Changes in the operating conditions based on the equivalence ratio revealed the development of an inner recirculation zone within the burner, which led to changes in the flame structure. The maximum temperature in the flame region increased to approximately 2200 K. These numerical results can serve as a reference for providing operational guidelines and assessing the feasibility of hydrogen co-firing in industrial gas turbines.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"9 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2025.106596","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Considerable efforts are being made worldwide to convert carbon-free fuels from gas turbines in the power generation sector while focusing on reducing greenhouse gases. In this study, CFD analysis was conducted to investigate the effects of methane–hydrogen co-firing on the combustion characteristics of a gas turbine combustor for power. This study aims to explore the combustion and emissions characteristics under various operating conditions, such as different co-firing and equivalence ratios. As the hydrogen co-firing ratio increased from 0% to 60%, the flame became increasingly attached to the burner, with the OH reaction zone shifting upstream by up to 80 mm, suggesting a higher risk of flashback owing to hydrogen. The emission characteristics showed an increase in NOx, reaching approximately 140 ppm at an equivalence ratio of 0.7, as observed in both the experiments and CFD. Changes in the operating conditions based on the equivalence ratio revealed the development of an inner recirculation zone within the burner, which led to changes in the flame structure. The maximum temperature in the flame region increased to approximately 2200 K. These numerical results can serve as a reference for providing operational guidelines and assessing the feasibility of hydrogen co-firing in industrial gas turbines.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.