Formation of 2D Electron Gas at a Non‐Polar Perovskite Oxide Interface: SrHfO3/BaSnO3

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jongkyoung Ko, Oliver Bierwagen, Wonwoo Suh, Jeewon B. Choi, Celesta S. Chang, Kookrin Char
{"title":"Formation of 2D Electron Gas at a Non‐Polar Perovskite Oxide Interface: SrHfO3/BaSnO3","authors":"Jongkyoung Ko, Oliver Bierwagen, Wonwoo Suh, Jeewon B. Choi, Celesta S. Chang, Kookrin Char","doi":"10.1002/adfm.202506665","DOIUrl":null,"url":null,"abstract":"A consistent increase in conductance in La‐doped BaSnO<jats:sub>3</jats:sub> (BLSO) is observed after forming an interface with the non‐polar perovskite SrHfO<jats:sub>3</jats:sub> (SHO). The conductance enhancement at the SHO/BLSO interface is measured as a function of the thickness of the SHO layer and the La doping rate in the BLSO layer. A monotonic increase of conductance as a function of the SHO thickness is observed, unlike the case of polar interfaces of LaInO<jats:sub>3</jats:sub>/BaSnO<jats:sub>3</jats:sub> and LaScO<jats:sub>3</jats:sub>/BaSnO<jats:sub>3</jats:sub>. The first several unit cells of SHO have the most significant impact on conductance. It is also found that the SHO/BLSO interface requires little doping (≈0.2%) to compensate for the deep acceptors in BaSnO<jats:sub>3</jats:sub>. To determine the charge carrier distribution, capacitance–voltage profiling is employed, which indicates that the charge carriers are confined within 1–2 nm of the interface. The observed 2D electron gas behavior at the interface is analyzed using a self‐consistent Poisson‐Schrödinger equation solver. This analysis provides a consistent picture of the SHO thickness and the La‐doping dependence of conductance enhancement at the SHO/BLSO interface, suggesting that the large conduction band offset at the SHO/BLSO interface and the intrinsic deep donor states in SHO are responsible for formation of a potential well in the BLSO side.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"246 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202506665","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A consistent increase in conductance in La‐doped BaSnO3 (BLSO) is observed after forming an interface with the non‐polar perovskite SrHfO3 (SHO). The conductance enhancement at the SHO/BLSO interface is measured as a function of the thickness of the SHO layer and the La doping rate in the BLSO layer. A monotonic increase of conductance as a function of the SHO thickness is observed, unlike the case of polar interfaces of LaInO3/BaSnO3 and LaScO3/BaSnO3. The first several unit cells of SHO have the most significant impact on conductance. It is also found that the SHO/BLSO interface requires little doping (≈0.2%) to compensate for the deep acceptors in BaSnO3. To determine the charge carrier distribution, capacitance–voltage profiling is employed, which indicates that the charge carriers are confined within 1–2 nm of the interface. The observed 2D electron gas behavior at the interface is analyzed using a self‐consistent Poisson‐Schrödinger equation solver. This analysis provides a consistent picture of the SHO thickness and the La‐doping dependence of conductance enhancement at the SHO/BLSO interface, suggesting that the large conduction band offset at the SHO/BLSO interface and the intrinsic deep donor states in SHO are responsible for formation of a potential well in the BLSO side.
非极性钙钛矿氧化物界面上二维电子气体的形成:SrHfO3/BaSnO3
在与非极性钙钛矿SrHfO3 (SHO)形成界面后,观察到La掺杂BaSnO3 (BLSO)的电导持续增加。SHO/BLSO界面的电导增强是SHO层厚度和BLSO层中La掺杂率的函数。与LaInO3/BaSnO3和LaScO3/BaSnO3的极性界面不同,电导随SHO厚度的变化呈单调增加。SHO的前几个单胞对电导的影响最为显著。还发现SHO/BLSO界面只需要少量掺杂(≈0.2%)就可以补偿BaSnO3中的深层受体。为了确定载流子的分布,采用了电容电压谱法,表明载流子被限制在距离界面1 ~ 2nm的范围内。使用自洽泊松Schrödinger方程求解器分析了在界面处观察到的二维电子气体行为。该分析提供了SHO厚度和La掺杂对SHO/BLSO界面电导增强依赖性的一致图像,表明SHO/BLSO界面的大导带偏移和SHO中固有的深层给体态是造成BLSO侧电位阱形成的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信