Cl−‐Doped Polypyrrole Nanotubes Toward Robust Thermal Dissipation and Tunable Microwave Absorbing/Shielding Properties

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Baoxin Fan, Ran Ji, Bingran Huang, Yang Yu, Cheng Xie, Qian Lin, Guoxiu Tong, Liyan Xie, Tong Wu
{"title":"Cl−‐Doped Polypyrrole Nanotubes Toward Robust Thermal Dissipation and Tunable Microwave Absorbing/Shielding Properties","authors":"Baoxin Fan, Ran Ji, Bingran Huang, Yang Yu, Cheng Xie, Qian Lin, Guoxiu Tong, Liyan Xie, Tong Wu","doi":"10.1002/adfm.202511825","DOIUrl":null,"url":null,"abstract":"Developing multifunctional electromagnetic (EM) protection materials with high thermal conductivity is of great significance for next‐generation wearable electronics. However, balancing the different functionalities is a challenging task due to performance incompatibility. Therefore, this study aims to develop Cl<jats:sup>−</jats:sup>‐doped PPy nanotubes as a new multifunctional EM protection material via a simple soft template‐assisted oxidation polymerization process. The Cl<jats:sup>−</jats:sup> doping level and nanotube structure are precisely tuned by controlling the concentrations of MO and FeCl<jats:sub>3</jats:sub>, benefiting not simply conductivity but multiple polarizations and thermal transfer rates. Theoretical analyses confirm that controlling the Cl<jats:sup>−</jats:sup> doping level can adjust the PPy energy band structure and enable its conversion from semiconductor to conductor. The Cl<jats:sup>−</jats:sup>‐doped PPy nanotubes (PPy‐M‐4) exhibit efficient wide‐band microwave absorption (3.32 GHz mm<jats:sup>−1</jats:sup>) and RCS reduction (33.45 dBm<jats:sup>2</jats:sup>) at a 4 wt.% load, and attain a high EMI SE value of 66.36 dB with 99.9% shielding over 2–18 GHz at a 20 wt.% load. Furthermore, the Cl<jats:sup>−</jats:sup>‐doped PPy nanotubes/silicone membranes possess high tensile strength, exceptional flexibility, and high thermal conductivity (3.597 W m<jats:sup>−1</jats:sup> K<jats:sup>−1</jats:sup>), resulting from their 3D‐interconnected network, electrons, multifrequency active phonons, and coupling. These properties outperform those of most other materials.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"56 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202511825","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing multifunctional electromagnetic (EM) protection materials with high thermal conductivity is of great significance for next‐generation wearable electronics. However, balancing the different functionalities is a challenging task due to performance incompatibility. Therefore, this study aims to develop Cl‐doped PPy nanotubes as a new multifunctional EM protection material via a simple soft template‐assisted oxidation polymerization process. The Cl doping level and nanotube structure are precisely tuned by controlling the concentrations of MO and FeCl3, benefiting not simply conductivity but multiple polarizations and thermal transfer rates. Theoretical analyses confirm that controlling the Cl doping level can adjust the PPy energy band structure and enable its conversion from semiconductor to conductor. The Cl‐doped PPy nanotubes (PPy‐M‐4) exhibit efficient wide‐band microwave absorption (3.32 GHz mm−1) and RCS reduction (33.45 dBm2) at a 4 wt.% load, and attain a high EMI SE value of 66.36 dB with 99.9% shielding over 2–18 GHz at a 20 wt.% load. Furthermore, the Cl‐doped PPy nanotubes/silicone membranes possess high tensile strength, exceptional flexibility, and high thermal conductivity (3.597 W m−1 K−1), resulting from their 3D‐interconnected network, electrons, multifrequency active phonons, and coupling. These properties outperform those of most other materials.
Cl−掺杂聚吡咯纳米管具有强大的热耗散和可调谐的微波吸收/屏蔽性能
开发高导热的多功能电磁保护材料对下一代可穿戴电子产品具有重要意义。然而,由于性能不兼容,平衡不同的功能是一项具有挑战性的任务。因此,本研究旨在通过简单的软模板辅助氧化聚合工艺,开发Cl−掺杂的PPy纳米管作为一种新的多功能电磁保护材料。通过控制MO和FeCl3的浓度,可以精确调节Cl−掺杂水平和纳米管结构,不仅有利于电导率,而且有利于多极化和热传递速率。理论分析证实,控制Cl−掺杂水平可以调节PPy的能带结构,使其从半导体转变为导体。掺杂氯离子的PPy纳米管(PPy‐M‐4)在4 wt.%负载下表现出高效的宽带微波吸收(3.32 GHz mm−1)和RCS降低(33.45 dBm2),在20 wt.%负载下,在2-18 GHz范围内获得66.36 dB的高EMI SE值和99.9%的屏蔽。此外,由于其三维互联的网络、电子、多频有源声子和耦合,Cl−掺杂的PPy纳米管/硅膜具有高拉伸强度、优异的柔韧性和高导热性(3.597 W m−1 K−1)。这些性能优于大多数其他材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信