Prakash Kharel, Nupur Bhatter, Safiyah Zubair, Shawn M Lyons, Paul J Anderson, Pavel Ivanov
{"title":"G-quadruplex topologies determine the functional outcome of guanine-rich bioactive oligonucleotides","authors":"Prakash Kharel, Nupur Bhatter, Safiyah Zubair, Shawn M Lyons, Paul J Anderson, Pavel Ivanov","doi":"10.1093/nar/gkaf590","DOIUrl":null,"url":null,"abstract":"Guanine-rich nucleic acid sequences can exert sequence- and/or structure-specific activities to influence biological and pathobiological cellular processes. As such, it has been reported that different G-rich oligonucleotides (both DNA and RNA) can have cytotoxic as well as cytoprotective effects on the cells. However, the mechanisms of such a biological outcome are unclear. Here, we report that G-rich DNA oligonucleotides (ODNs) that can form four-stranded secondary structures called G-quadruplexes (G4s) have a topology-dependent biological outcome. Using different biochemical, biophysical, and cellular approaches, we demonstrate that only the parallel topology G4-forming ODNs can repress eukaryotic messenger RNA (mRNA) translation by directly interacting with eukaryotic translation initiation protein 1 (EIF4G1), while the anti-parallel topology G4s do not have inhibitory effect on mRNA translation. These results directly connect the G4 topological differences within ODNs to differential functional impacts in mRNA translation intrans. Our study provides the foundation for the rational design of G-rich oligonucleotides for a desired therapeutic outcome.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"54 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf590","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Guanine-rich nucleic acid sequences can exert sequence- and/or structure-specific activities to influence biological and pathobiological cellular processes. As such, it has been reported that different G-rich oligonucleotides (both DNA and RNA) can have cytotoxic as well as cytoprotective effects on the cells. However, the mechanisms of such a biological outcome are unclear. Here, we report that G-rich DNA oligonucleotides (ODNs) that can form four-stranded secondary structures called G-quadruplexes (G4s) have a topology-dependent biological outcome. Using different biochemical, biophysical, and cellular approaches, we demonstrate that only the parallel topology G4-forming ODNs can repress eukaryotic messenger RNA (mRNA) translation by directly interacting with eukaryotic translation initiation protein 1 (EIF4G1), while the anti-parallel topology G4s do not have inhibitory effect on mRNA translation. These results directly connect the G4 topological differences within ODNs to differential functional impacts in mRNA translation intrans. Our study provides the foundation for the rational design of G-rich oligonucleotides for a desired therapeutic outcome.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.