{"title":"Long-Term Multidimensional Models of Core-Collapse Supernovae: Progress and Challenges","authors":"Hans-Thomas Janka","doi":"10.1146/annurev-nucl-121423-100945","DOIUrl":null,"url":null,"abstract":"Self-consistent, multidimensional core-collapse (CC) supernova (SN) simulations, especially in three dimensions, have achieved tremendous progress over the past 10 years. They are now able to follow the entire evolution from CC through bounce, neutrino-triggered shock revival, and shock breakout at the stellar surface to the electromagnetic SN outburst and the subsequent SN remnant phase. Thus they provide general support for the neutrino-driven explosion mechanism by reproducing observed SN energies, neutron star (NS) kicks, and diagnostically relevant radioactive isotope yields. They also allow prediction of neutrino and gravitational wave signals for many seconds of proto-NS cooling, confirm correlations between explosion and progenitor or remnant properties already expected from previous spherically symmetric (one-dimensional) and two-dimensional models, and carve out various scenarios for stellar-mass black hole (BH) formation. Despite these successes, it is currently unclear which stars explode or form BHs because different modeling approaches disagree and suggest the possible importance of the three-dimensional nature of the progenitors and of magnetic fields. The role of neutrino flavor conversion in SN cores needs to be better understood, the nuclear equation of state (including potential phase transitions) implies major uncertainties, the SN 1987A neutrino measurements raise new puzzles, and tracing a possible correlation of NS spins and kicks requires still more refined SN simulations.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":"48 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-121423-100945","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Self-consistent, multidimensional core-collapse (CC) supernova (SN) simulations, especially in three dimensions, have achieved tremendous progress over the past 10 years. They are now able to follow the entire evolution from CC through bounce, neutrino-triggered shock revival, and shock breakout at the stellar surface to the electromagnetic SN outburst and the subsequent SN remnant phase. Thus they provide general support for the neutrino-driven explosion mechanism by reproducing observed SN energies, neutron star (NS) kicks, and diagnostically relevant radioactive isotope yields. They also allow prediction of neutrino and gravitational wave signals for many seconds of proto-NS cooling, confirm correlations between explosion and progenitor or remnant properties already expected from previous spherically symmetric (one-dimensional) and two-dimensional models, and carve out various scenarios for stellar-mass black hole (BH) formation. Despite these successes, it is currently unclear which stars explode or form BHs because different modeling approaches disagree and suggest the possible importance of the three-dimensional nature of the progenitors and of magnetic fields. The role of neutrino flavor conversion in SN cores needs to be better understood, the nuclear equation of state (including potential phase transitions) implies major uncertainties, the SN 1987A neutrino measurements raise new puzzles, and tracing a possible correlation of NS spins and kicks requires still more refined SN simulations.
期刊介绍:
The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation.
One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.