Strain relaxation in halide perovskites via 2D/3D perovskite heterojunction formation

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Advances Pub Date : 2025-06-27
Dongtao Liu, Jinxin Bi, Weidong Xu, Kieran W. P. Orr, Fei Wang, Xueping Liu, Aobo Ren, Jing Zhang, Steven Hinder, Bowei Li, Xiaoguang Luo, Yonglong Shen, Hanlin Hu, Guosheng Shao, Samuel D. Stranks, Lei Su, Wei Zhang
{"title":"Strain relaxation in halide perovskites via 2D/3D perovskite heterojunction formation","authors":"Dongtao Liu,&nbsp;Jinxin Bi,&nbsp;Weidong Xu,&nbsp;Kieran W. P. Orr,&nbsp;Fei Wang,&nbsp;Xueping Liu,&nbsp;Aobo Ren,&nbsp;Jing Zhang,&nbsp;Steven Hinder,&nbsp;Bowei Li,&nbsp;Xiaoguang Luo,&nbsp;Yonglong Shen,&nbsp;Hanlin Hu,&nbsp;Guosheng Shao,&nbsp;Samuel D. Stranks,&nbsp;Lei Su,&nbsp;Wei Zhang","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Applying mechanical strain and strain engineering to halide perovskites has endowed them with intriguing properties. However, an in-depth understanding of mechanical strain, including residual strain in halide perovskites, remains incomplete, coupled with the critical challenge of decoupling strain effects from other interferences. Here, we examine the relaxation of residual tensile strain in three-dimensional (3D) halide perovskites through 2D/3D perovskite heterojunction formation. The 2D perovskite induces structural fragmentation in 3D perovskites, facilitating plastic relaxation of tensile strain. By isolating extrinsic crystalline phase interference and exciton-related optical disturbances, we observe that 3D perovskites retain high crystallinity only with moderate tensile strain relaxation. This moderate relaxation enhances optoelectronic properties in 3D perovskites, including broadened band-to-band absorption and prolonged charge carrier lifetime, markedly contributing to an increase in the maximum attainable power conversion efficiency in photovoltaic devices. Our findings outline conditions for strain relaxation that optimize optoelectronic properties, advancing strain engineering in halide perovskites.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 26","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu3459","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu3459","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Applying mechanical strain and strain engineering to halide perovskites has endowed them with intriguing properties. However, an in-depth understanding of mechanical strain, including residual strain in halide perovskites, remains incomplete, coupled with the critical challenge of decoupling strain effects from other interferences. Here, we examine the relaxation of residual tensile strain in three-dimensional (3D) halide perovskites through 2D/3D perovskite heterojunction formation. The 2D perovskite induces structural fragmentation in 3D perovskites, facilitating plastic relaxation of tensile strain. By isolating extrinsic crystalline phase interference and exciton-related optical disturbances, we observe that 3D perovskites retain high crystallinity only with moderate tensile strain relaxation. This moderate relaxation enhances optoelectronic properties in 3D perovskites, including broadened band-to-band absorption and prolonged charge carrier lifetime, markedly contributing to an increase in the maximum attainable power conversion efficiency in photovoltaic devices. Our findings outline conditions for strain relaxation that optimize optoelectronic properties, advancing strain engineering in halide perovskites.

Abstract Image

通过2D/3D钙钛矿异质结形成卤化物钙钛矿的应变弛豫
将机械应变和应变工程应用于卤化钙钛矿,使其具有了令人感兴趣的性能。然而,对机械应变(包括卤化物钙钛矿中的残余应变)的深入了解仍然不完整,再加上将应变效应与其他干扰解耦的关键挑战。在这里,我们通过2D/3D钙钛矿异质结的形成,研究了三维(3D)卤化物钙钛矿中残余拉伸应变的松弛。二维钙钛矿导致三维钙钛矿结构破碎,有利于拉伸应变的塑性松弛。通过分离外部晶相干涉和激子相关的光学干扰,我们观察到三维钙钛矿仅在适度的拉伸应变弛豫下保持高结晶度。这种适度的弛缓增强了三维钙钛矿的光电性能,包括拓宽了带间吸收和延长了载流子寿命,显著提高了光伏器件中可达到的最大功率转换效率。我们的发现概述了优化光电性能的应变松弛条件,推进了卤化物钙钛矿的应变工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信