Anisotropic strain relaxation-induced directional ultrafast carrier dynamics in RuO2 films

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Advances Pub Date : 2025-06-27
Seung Gyo Jeong, In Hyeok Choi, Seungjun Lee, Jin Young Oh, Sreejith Nair, Jae Hyuck Lee, Changyoung Kim, Ambrose Seo, Woo Seok Choi, Tony Low, Jong Seok Lee, Bharat Jalan
{"title":"Anisotropic strain relaxation-induced directional ultrafast carrier dynamics in RuO2 films","authors":"Seung Gyo Jeong,&nbsp;In Hyeok Choi,&nbsp;Seungjun Lee,&nbsp;Jin Young Oh,&nbsp;Sreejith Nair,&nbsp;Jae Hyuck Lee,&nbsp;Changyoung Kim,&nbsp;Ambrose Seo,&nbsp;Woo Seok Choi,&nbsp;Tony Low,&nbsp;Jong Seok Lee,&nbsp;Bharat Jalan","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Ultrafast light-matter interactions inspire potential functionalities in picosecond optoelectronic applications. However, achieving directional carrier dynamics in metals remains challenging due to strong carrier scattering within a multiband environment, typically expected for isotropic carrier relaxation. In this study, we demonstrate epitaxial RuO<sub>2</sub>/TiO<sub>2</sub> (110) heterostructures grown by hybrid molecular beam epitaxy to engineer polarization selectivity of ultrafast light-matter interactions via anisotropic strain engineering. Combining spectroscopic ellipsometry, x-ray absorption spectroscopy, and optical pump-probe spectroscopy, we revealed the strong anisotropic transient optoelectronic response at an excitation energy of 1.58 eV in strain-engineered RuO<sub>2</sub>/TiO<sub>2</sub> (110) heterostructures along both in-plane [001] and [1<span><math><mstyle><mover><mn>1</mn><mo>¯</mo></mover></mstyle></math></span> 0] crystallographic directions. Theoretical analysis identifies strain-induced modifications in band nesting as the underlying mechanism for enhanced anisotropic carrier relaxation observed at this excitation energy. These findings establish epitaxial strain engineering as a powerful tool for tuning anisotropic optoelectronic responses with near-infrared excitations in metallic systems, paving the way for next-generation polarization-sensitive ultrafast optoelectronic devices.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 26","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw7125","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw7125","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrafast light-matter interactions inspire potential functionalities in picosecond optoelectronic applications. However, achieving directional carrier dynamics in metals remains challenging due to strong carrier scattering within a multiband environment, typically expected for isotropic carrier relaxation. In this study, we demonstrate epitaxial RuO2/TiO2 (110) heterostructures grown by hybrid molecular beam epitaxy to engineer polarization selectivity of ultrafast light-matter interactions via anisotropic strain engineering. Combining spectroscopic ellipsometry, x-ray absorption spectroscopy, and optical pump-probe spectroscopy, we revealed the strong anisotropic transient optoelectronic response at an excitation energy of 1.58 eV in strain-engineered RuO2/TiO2 (110) heterostructures along both in-plane [001] and [11¯ 0] crystallographic directions. Theoretical analysis identifies strain-induced modifications in band nesting as the underlying mechanism for enhanced anisotropic carrier relaxation observed at this excitation energy. These findings establish epitaxial strain engineering as a powerful tool for tuning anisotropic optoelectronic responses with near-infrared excitations in metallic systems, paving the way for next-generation polarization-sensitive ultrafast optoelectronic devices.

Abstract Image

RuO2薄膜中各向异性应变弛豫诱导的定向超快载流子动力学
超快光-物质相互作用激发了皮秒光电子应用的潜在功能。然而,在金属中实现定向载流子动力学仍然具有挑战性,因为在多波段环境中存在强烈的载流子散射,通常期望各向同性载流子弛豫。在这项研究中,我们展示了通过杂化分子束外延生长的RuO2/TiO2(110)异质结构,通过各向异性应变工程来设计超快光-物质相互作用的极化选择性。结合椭圆偏振光谱、x射线吸收光谱和光泵探针光谱,我们发现在激发能为1.58 eV时,应变工程的RuO2/TiO2(110)异质结构在面内[001]和[11¯0]晶体学方向上具有强的各向异性瞬态光电响应。理论分析表明,应变诱导的条带嵌套变化是在此激发能量下观察到的各向异性载流子弛豫增强的潜在机制。这些发现奠定了外延应变工程作为调谐金属系统中近红外激发的各向异性光电响应的有力工具,为下一代偏振敏感超快光电器件铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信