A Method for Automatic Feature Points Extraction of Pelvic Surface Based on PointMLP_RegNet

IF 8.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wei Kou, Rui Zhou, Hongmiao Zhang, Jianwen Cheng, Chi Zhu, Shaolong Kuang, Lihai Zhang, Lining Sun
{"title":"A Method for Automatic Feature Points Extraction of Pelvic Surface Based on PointMLP_RegNet","authors":"Wei Kou,&nbsp;Rui Zhou,&nbsp;Hongmiao Zhang,&nbsp;Jianwen Cheng,&nbsp;Chi Zhu,&nbsp;Shaolong Kuang,&nbsp;Lihai Zhang,&nbsp;Lining Sun","doi":"10.1049/cit2.70003","DOIUrl":null,"url":null,"abstract":"<p>The success of robot-assisted pelvic fracture reduction surgery heavily relies on the accuracy of 3D/3D feature-based registration. This process involves extracting anatomical feature points from pre-operative 3D images which can be challenging because of the complex and variable structure of the pelvis. PointMLP_RegNet, a modified PointMLP, was introduced to address this issue. It retains the feature extraction module of PointMLP but replaces the classification layer with a regression layer to predict the coordinates of feature points instead of conducting regular classification. A flowchart for an automatic feature points extraction method was presented, and a series of experiments was conducted on a clinical pelvic dataset to confirm the accuracy and effectiveness of the method. PointMLP_RegNet extracted feature points more accurately, with 8 out of 10 points showing less than 4 mm errors and the remaining two less than 5 mm. Compared to PointNet++ and PointNet, it exhibited higher accuracy, robustness and space efficiency. The proposed method will improve the accuracy of anatomical feature points extraction, enhance intra-operative registration precision and facilitate the widespread clinical application of robot-assisted pelvic fracture reduction.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"10 3","pages":"716-727"},"PeriodicalIF":8.4000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.70003","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The success of robot-assisted pelvic fracture reduction surgery heavily relies on the accuracy of 3D/3D feature-based registration. This process involves extracting anatomical feature points from pre-operative 3D images which can be challenging because of the complex and variable structure of the pelvis. PointMLP_RegNet, a modified PointMLP, was introduced to address this issue. It retains the feature extraction module of PointMLP but replaces the classification layer with a regression layer to predict the coordinates of feature points instead of conducting regular classification. A flowchart for an automatic feature points extraction method was presented, and a series of experiments was conducted on a clinical pelvic dataset to confirm the accuracy and effectiveness of the method. PointMLP_RegNet extracted feature points more accurately, with 8 out of 10 points showing less than 4 mm errors and the remaining two less than 5 mm. Compared to PointNet++ and PointNet, it exhibited higher accuracy, robustness and space efficiency. The proposed method will improve the accuracy of anatomical feature points extraction, enhance intra-operative registration precision and facilitate the widespread clinical application of robot-assisted pelvic fracture reduction.

Abstract Image

基于PointMLP_RegNet的骨盆表面特征点自动提取方法
机器人辅助骨盆骨折复位手术的成功在很大程度上依赖于3D/3D特征配准的准确性。该过程包括从术前3D图像中提取解剖特征点,由于骨盆结构复杂多变,这可能具有挑战性。PointMLP_RegNet,一个修改过的PointMLP,被引入来解决这个问题。它保留了PointMLP的特征提取模块,但用回归层代替分类层来预测特征点的坐标,而不是进行常规分类。提出了一种自动特征点提取方法的流程,并在临床骨盆数据集上进行了一系列实验,验证了该方法的准确性和有效性。PointMLP_RegNet更准确地提取了特征点,10个点中有8个误差小于4毫米,其余两个小于5毫米。与PointNet++和PointNet相比,该方法具有更高的精度、鲁棒性和空间效率。该方法将提高解剖特征点提取的准确性,提高术中配准精度,促进机器人辅助骨盆骨折复位的广泛临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CAAI Transactions on Intelligence Technology
CAAI Transactions on Intelligence Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
11.00
自引率
3.90%
发文量
134
审稿时长
35 weeks
期刊介绍: CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信