Jisu Han, Sang Kyu Lee, Juhyun Park, Jugyeong Lee, Chil Seong Ah, Tae-Youb Kim
{"title":"Maximization of near-infrared modulation by optimizing the transparent conducting–electrode resistance","authors":"Jisu Han, Sang Kyu Lee, Juhyun Park, Jugyeong Lee, Chil Seong Ah, Tae-Youb Kim","doi":"10.4218/etrij.2024-0474","DOIUrl":null,"url":null,"abstract":"<p>Traditional camouflage focuses on visual concealment, but the growing use of infrared (IR) detection systems has created a need for materials that can manipulate IR wavelengths. Electrochromic devices—commonly used for light and heat control—offer a promising solution for dynamic IR control. These systems rely on transparent conducting electrodes, with indium tin oxide (ITO) being the most common. However, ITO presents a challenge, as it generally blocks IR light transmissions. In this study, we optimize for IR transmissions by adjusting the ITO thickness, demonstrating excellent modulation in electrochromic devices. Devices with ITO thicknesses of 40 nm, 75 nm, and 302 nm are tested, with the 75-nm electrode achieving 67.73% transmittance modulation in the visible range and 51.41% in the near-infrared range. Response times for bleaching and coloration are 4.0 s and 2.8 s, respectively.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 3","pages":"433-444"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2024-0474","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2024-0474","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional camouflage focuses on visual concealment, but the growing use of infrared (IR) detection systems has created a need for materials that can manipulate IR wavelengths. Electrochromic devices—commonly used for light and heat control—offer a promising solution for dynamic IR control. These systems rely on transparent conducting electrodes, with indium tin oxide (ITO) being the most common. However, ITO presents a challenge, as it generally blocks IR light transmissions. In this study, we optimize for IR transmissions by adjusting the ITO thickness, demonstrating excellent modulation in electrochromic devices. Devices with ITO thicknesses of 40 nm, 75 nm, and 302 nm are tested, with the 75-nm electrode achieving 67.73% transmittance modulation in the visible range and 51.41% in the near-infrared range. Response times for bleaching and coloration are 4.0 s and 2.8 s, respectively.
期刊介绍:
ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics.
Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security.
With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.