Comparison of Reinforcement Learning Approaches for Automated Control Derivation in Design Space Exploration for Safety-Critical Automotive Applications

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Patrick Hoffmann;Kirill Gorelik;Valentin Ivanov
{"title":"Comparison of Reinforcement Learning Approaches for Automated Control Derivation in Design Space Exploration for Safety-Critical Automotive Applications","authors":"Patrick Hoffmann;Kirill Gorelik;Valentin Ivanov","doi":"10.1109/OJVT.2025.3578225","DOIUrl":null,"url":null,"abstract":"This paper explores reinforcement learning for automated control derivation within design space exploration with focus on a functional safety concept for safety-critical automotive applications. A multi-task reinforcement learning framework is proposed to handle optimal control for various system topologies, component dimensioning, failures and scenarios. The timing analysis reveals that increasing the number of design variants significantly reduces per-topology training time, demonstrating the scalability of the proposed multi-task reinforcement learning approach for exploring large design spaces. This enables the derivation of optimal control across the entire design space, including both normal and failure conditions, while accounting for non linear plant dynamics with non-ideal actuator dynamics. The proposed methodology reduces manual engineering effort, supports derivation of fault tolerant control and offers a practical path toward automation in large-scale design space explorations.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"1631-1649"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11029148","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11029148/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores reinforcement learning for automated control derivation within design space exploration with focus on a functional safety concept for safety-critical automotive applications. A multi-task reinforcement learning framework is proposed to handle optimal control for various system topologies, component dimensioning, failures and scenarios. The timing analysis reveals that increasing the number of design variants significantly reduces per-topology training time, demonstrating the scalability of the proposed multi-task reinforcement learning approach for exploring large design spaces. This enables the derivation of optimal control across the entire design space, including both normal and failure conditions, while accounting for non linear plant dynamics with non-ideal actuator dynamics. The proposed methodology reduces manual engineering effort, supports derivation of fault tolerant control and offers a practical path toward automation in large-scale design space explorations.
安全关键型汽车应用设计空间探索中自动控制推导的强化学习方法比较
本文探讨了设计空间探索中自动控制派生的强化学习,重点是安全关键汽车应用的功能安全概念。提出了一个多任务强化学习框架来处理各种系统拓扑、组件维度、故障和场景的最优控制。时序分析表明,增加设计变体的数量显著减少了每个拓扑的训练时间,证明了所提出的多任务强化学习方法在探索大型设计空间方面的可扩展性。这使得在整个设计空间中推导最优控制,包括正常和故障条件,同时考虑非线性装置动力学和非理想执行器动力学。提出的方法减少了人工工程的工作量,支持容错控制的推导,并为大规模设计空间探索的自动化提供了一条实用的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信