Kai Ren;Colin Chen;Hyeontae Sung;Heejin Ahn;Ian M. Mitchell;Maryam Kamgarpour
{"title":"Recursively Feasible Chance-Constrained Model Predictive Control Under Gaussian Mixture Model Uncertainty","authors":"Kai Ren;Colin Chen;Hyeontae Sung;Heejin Ahn;Ian M. Mitchell;Maryam Kamgarpour","doi":"10.1109/TCST.2024.3477089","DOIUrl":null,"url":null,"abstract":"We present a chance-constrained model predictive control (MPC) framework under Gaussian mixture model (GMM) uncertainty. Specifically, we consider the uncertainty that arises from predicting future behaviors of moving obstacles, which may exhibit multiple modes (for example, turning left or right). To address multimodal uncertainty distribution, we propose three MPC formulations: nominal chance-constrained planning, robust chance-constrained planning, and contingency planning. We prove that closed-loop trajectories generated by the three planners are safe. The approaches differ in conservativeness and performance guarantee. In particular, the robust chance-constrained planner is recursively feasible under certain assumptions on the propagation of prediction uncertainty. On the other hand, the contingency planner generates a less conservative closed-loop trajectory than the nominal planner. We validate our planners using state-of-the-art trajectory prediction algorithms in autonomous driving simulators.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 4","pages":"1193-1206"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10745535/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a chance-constrained model predictive control (MPC) framework under Gaussian mixture model (GMM) uncertainty. Specifically, we consider the uncertainty that arises from predicting future behaviors of moving obstacles, which may exhibit multiple modes (for example, turning left or right). To address multimodal uncertainty distribution, we propose three MPC formulations: nominal chance-constrained planning, robust chance-constrained planning, and contingency planning. We prove that closed-loop trajectories generated by the three planners are safe. The approaches differ in conservativeness and performance guarantee. In particular, the robust chance-constrained planner is recursively feasible under certain assumptions on the propagation of prediction uncertainty. On the other hand, the contingency planner generates a less conservative closed-loop trajectory than the nominal planner. We validate our planners using state-of-the-art trajectory prediction algorithms in autonomous driving simulators.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.