Laser directed energy deposition of TA15/TiAl bimetallic structure: laser power optimization, microstructure evolution and mechanical performance

Qing Liang , Leyu Cai , Qingge Wang , Yafei Wang , Xiaopeng Liang , Quan Shan , Hong Wu
{"title":"Laser directed energy deposition of TA15/TiAl bimetallic structure: laser power optimization, microstructure evolution and mechanical performance","authors":"Qing Liang ,&nbsp;Leyu Cai ,&nbsp;Qingge Wang ,&nbsp;Yafei Wang ,&nbsp;Xiaopeng Liang ,&nbsp;Quan Shan ,&nbsp;Hong Wu","doi":"10.1016/j.smmf.2025.100087","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the fabrication of crack-free TA15/TiAl bimetallic structures prepared by laser directed energy deposition (LDED) for high-temperature applications. By employing laser power (800−1600 W) for S1–S5 (1600, 1400, 1200, 1000, 800 W, respectively), defect-free interfaces were achieved, with sample S2 (1400 W) exhibiting the lowest porosity (0.19 %) and finest microstructure. The transition zone exhibited a composition gradient of Al/Ti, driven by atomic diffusion and Marangoni convection, resulting in a heterogeneous multi-gradient structure. Notably, the uniform distribution of FCC phase in the transition zone reduced stress concentration from Al<sub>3</sub>Ti hard phase, while the absence of cracks and lack-of-fusion defects confirmed robust metallurgical bonding. Room-temperature tensile tests showed that sample S2 fractured near the TiAl side, achieving an ultimate tensile strength of 780 ± 25 MPa and elongation of 1.41 ± 0.11 %, attributed to stress redistribution facilitated by ductile α-Ti and gradient strain accommodation. These findings demonstrated that LDED-fabricated TA15/TiAl bimetallic composites exhibited enhanced interfacial strength and thermal stability, promising for aerospace components in extreme environments.</div></div>","PeriodicalId":101164,"journal":{"name":"Smart Materials in Manufacturing","volume":"3 ","pages":"Article 100087"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772810225000170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the fabrication of crack-free TA15/TiAl bimetallic structures prepared by laser directed energy deposition (LDED) for high-temperature applications. By employing laser power (800−1600 W) for S1–S5 (1600, 1400, 1200, 1000, 800 W, respectively), defect-free interfaces were achieved, with sample S2 (1400 W) exhibiting the lowest porosity (0.19 %) and finest microstructure. The transition zone exhibited a composition gradient of Al/Ti, driven by atomic diffusion and Marangoni convection, resulting in a heterogeneous multi-gradient structure. Notably, the uniform distribution of FCC phase in the transition zone reduced stress concentration from Al3Ti hard phase, while the absence of cracks and lack-of-fusion defects confirmed robust metallurgical bonding. Room-temperature tensile tests showed that sample S2 fractured near the TiAl side, achieving an ultimate tensile strength of 780 ± 25 MPa and elongation of 1.41 ± 0.11 %, attributed to stress redistribution facilitated by ductile α-Ti and gradient strain accommodation. These findings demonstrated that LDED-fabricated TA15/TiAl bimetallic composites exhibited enhanced interfacial strength and thermal stability, promising for aerospace components in extreme environments.

Abstract Image

激光定向能沉积TA15/TiAl双金属结构:激光功率优化、微观结构演变及力学性能
本研究探索了激光定向能沉积(LDED)制备高温无裂纹TA15/TiAl双金属结构的方法。采用800 ~ 1600 W的激光功率对s1 ~ s5(分别为1600、1400、1200、1000、800 W)进行处理,得到了无缺陷的界面,其中S2 (1400 W)的孔隙率最低(0.19%),微观结构最精细。在原子扩散和Marangoni对流的驱动下,过渡区呈现Al/Ti组成梯度,形成非均质多梯度结构。值得注意的是,过渡区FCC相的均匀分布降低了Al3Ti硬相的应力集中,同时没有裂纹和未熔合缺陷,证实了冶金结合的坚固性。室温拉伸试验表明,试样S2在TiAl侧附近断裂,拉伸强度为780±25 MPa,延伸率为1.41±0.11%,这主要是由于α-Ti的韧性和梯度应变调节促进了应力重分布。这些发现表明,led制造的TA15/TiAl双金属复合材料具有增强的界面强度和热稳定性,有望用于极端环境下的航空航天部件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信