Alison R. Weiss , Anahit Grigorian , Steven Dash , Christopher D. Kroenke , Henryk F. Urbanski , Steven G. Kohama
{"title":"Age-related differences in cerebral morphology and microstructure in rhesus macaques","authors":"Alison R. Weiss , Anahit Grigorian , Steven Dash , Christopher D. Kroenke , Henryk F. Urbanski , Steven G. Kohama","doi":"10.1016/j.neurobiolaging.2025.06.004","DOIUrl":null,"url":null,"abstract":"<div><div>The rhesus macaque presents a promising model for translational research into human brain aging due to this species’ long lifespan and close phylogenic relationship. We conducted a cross-sectional study identifying microstructural and morphological biomarkers of aging in a cohort of 37 healthy animals (18F/19M, aged 5–28 years), using high-resolution T2-weighted (T2w) and diffusion-weighted (DW) images. Using Tensor Based Morphometry, significant age-associated regional brain atrophy was observed in some areas of the frontal and parietal cortex, as well as the striatum. Additionally, age-associated differences in white matter diffusion were observed in several brain regions, including frontal and temporal white matter areas, and regions of the internal capsule and corpus callosum. Taken together, the results demonstrate that morphological and microstructural age-related differences can be disclosed in cortical, striatal, and thalamic regions, as well as in the white matter fiber pathways connecting these areas, using high-resolution DTI and MRI.</div></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"154 ","pages":"Pages 37-46"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Aging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197458025001010","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The rhesus macaque presents a promising model for translational research into human brain aging due to this species’ long lifespan and close phylogenic relationship. We conducted a cross-sectional study identifying microstructural and morphological biomarkers of aging in a cohort of 37 healthy animals (18F/19M, aged 5–28 years), using high-resolution T2-weighted (T2w) and diffusion-weighted (DW) images. Using Tensor Based Morphometry, significant age-associated regional brain atrophy was observed in some areas of the frontal and parietal cortex, as well as the striatum. Additionally, age-associated differences in white matter diffusion were observed in several brain regions, including frontal and temporal white matter areas, and regions of the internal capsule and corpus callosum. Taken together, the results demonstrate that morphological and microstructural age-related differences can be disclosed in cortical, striatal, and thalamic regions, as well as in the white matter fiber pathways connecting these areas, using high-resolution DTI and MRI.
期刊介绍:
Neurobiology of Aging publishes the results of studies in behavior, biochemistry, cell biology, endocrinology, molecular biology, morphology, neurology, neuropathology, pharmacology, physiology and protein chemistry in which the primary emphasis involves mechanisms of nervous system changes with age or diseases associated with age. Reviews and primary research articles are included, occasionally accompanied by open peer commentary. Letters to the Editor and brief communications are also acceptable. Brief reports of highly time-sensitive material are usually treated as rapid communications in which case editorial review is completed within six weeks and publication scheduled for the next available issue.