{"title":"Higher-order generalized finite differences for variable coefficient diffusion operators","authors":"Heinrich Kraus , Jörg Kuhnert , Pratik Suchde","doi":"10.1016/j.camwa.2025.06.018","DOIUrl":null,"url":null,"abstract":"<div><div>We present a novel approach of discretizing variable coefficient diffusion operators in the context of meshfree generalized finite difference methods. Our ansatz uses properties of derived operators and combines the discrete Laplace operator with reconstruction functions approximating the diffusion coefficient. Provided that the reconstructions are of a sufficiently high order, we prove that the order of accuracy of the discrete Laplace operator transfers to the derived diffusion operator. We show that the new discrete diffusion operator inherits the diagonal dominance property of the discrete Laplace operator. Finally, we present the possibility of discretizing anisotropic diffusion operators with the help of derived operators. Our numerical results for Poisson's equation and the heat equation show that even low-order reconstructions preserve the order of the underlying discrete Laplace operator for sufficiently smooth diffusion coefficients. In experiments, we demonstrate the applicability of the new discrete diffusion operator to interface problems with point clouds not aligning to the interface and numerically show first-order convergence.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"194 ","pages":"Pages 257-271"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125002640","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We present a novel approach of discretizing variable coefficient diffusion operators in the context of meshfree generalized finite difference methods. Our ansatz uses properties of derived operators and combines the discrete Laplace operator with reconstruction functions approximating the diffusion coefficient. Provided that the reconstructions are of a sufficiently high order, we prove that the order of accuracy of the discrete Laplace operator transfers to the derived diffusion operator. We show that the new discrete diffusion operator inherits the diagonal dominance property of the discrete Laplace operator. Finally, we present the possibility of discretizing anisotropic diffusion operators with the help of derived operators. Our numerical results for Poisson's equation and the heat equation show that even low-order reconstructions preserve the order of the underlying discrete Laplace operator for sufficiently smooth diffusion coefficients. In experiments, we demonstrate the applicability of the new discrete diffusion operator to interface problems with point clouds not aligning to the interface and numerically show first-order convergence.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).