Jagadis Gautam , Roop L. Mahajan , Seul-Yi Lee , Soo-Jin Park
{"title":"Bifunctional electrocatalysts for Zn–air batteries: A comprehensive review of design optimization and in-situ characterization","authors":"Jagadis Gautam , Roop L. Mahajan , Seul-Yi Lee , Soo-Jin Park","doi":"10.1016/j.mser.2025.101058","DOIUrl":null,"url":null,"abstract":"<div><div>Rechargeable Zinc-Air Batteries (ZABs) stand out for their superior energy density, safety, cost-effectiveness, and environmental sustainability, making them a promising energy storage solution. Their performance depends on the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air electrode but is hindered by sluggish kinetics, limited bifunctionality, precious metal dependence, and corrosion. This review explores cutting-edge bifunctional electrocatalysts, focusing on strategies that enhance ORR and OER activity. It critically examines ZAB fundamentals, reaction mechanisms, and innovations in catalyst design—optimizing micro/nano-architectures, electronic structures, binding energies, and surface properties to improve activity, selectivity, and durability. A detailed analysis of electronic, geometric, and synergistic effects at a microscopic scale sheds light on catalytic performance enhancement. <em>In situ</em> characterization techniques are emphasized to unravel electrode-electrolyte interfacial dynamics, surface reconstruction, and mechanistic pathways. Finally, key challenges and future research directions are outlined, driving the next generation of high-performance ZABs.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"166 ","pages":"Article 101058"},"PeriodicalIF":31.6000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25001354","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Rechargeable Zinc-Air Batteries (ZABs) stand out for their superior energy density, safety, cost-effectiveness, and environmental sustainability, making them a promising energy storage solution. Their performance depends on the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air electrode but is hindered by sluggish kinetics, limited bifunctionality, precious metal dependence, and corrosion. This review explores cutting-edge bifunctional electrocatalysts, focusing on strategies that enhance ORR and OER activity. It critically examines ZAB fundamentals, reaction mechanisms, and innovations in catalyst design—optimizing micro/nano-architectures, electronic structures, binding energies, and surface properties to improve activity, selectivity, and durability. A detailed analysis of electronic, geometric, and synergistic effects at a microscopic scale sheds light on catalytic performance enhancement. In situ characterization techniques are emphasized to unravel electrode-electrolyte interfacial dynamics, surface reconstruction, and mechanistic pathways. Finally, key challenges and future research directions are outlined, driving the next generation of high-performance ZABs.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.