De-si CHEN , Heng-yu LI , Jia-jun DONG , Ming-guang YAO
{"title":"Synthesis of hexagonal diamond: A review","authors":"De-si CHEN , Heng-yu LI , Jia-jun DONG , Ming-guang YAO","doi":"10.1016/S1872-5805(25)60993-0","DOIUrl":null,"url":null,"abstract":"<div><div>Lonsdaleite, also known as hexagonal diamond, is an allotrope of carbon with a hexagonal crystal structure, which was discovered in the nanostructure of the Canyon Diablo meteorite. Theoretical calculations have shown that this structure gives it exceptional physical properties that exceed those of cubic diamond, making it highly promising for groundbreaking applications in superhard cutting tools, wide-bandgap semiconductor devices, and materials for extreme environments. As a result, the controllable synthesis of hexagonal diamond has emerged as a cutting-edge research focus in materials science. This review briefly outlines the progress in this area, with a focus on the mechanisms governing its key synthesis conditions, its intrinsic physical properties, and its potential applications in various fields.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (82KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 3","pages":"Pages 584-595"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525609930","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Lonsdaleite, also known as hexagonal diamond, is an allotrope of carbon with a hexagonal crystal structure, which was discovered in the nanostructure of the Canyon Diablo meteorite. Theoretical calculations have shown that this structure gives it exceptional physical properties that exceed those of cubic diamond, making it highly promising for groundbreaking applications in superhard cutting tools, wide-bandgap semiconductor devices, and materials for extreme environments. As a result, the controllable synthesis of hexagonal diamond has emerged as a cutting-edge research focus in materials science. This review briefly outlines the progress in this area, with a focus on the mechanisms governing its key synthesis conditions, its intrinsic physical properties, and its potential applications in various fields.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.