Synthesis of hexagonal diamond: A review

IF 5.7 3区 材料科学 Q2 Materials Science
De-si CHEN , Heng-yu LI , Jia-jun DONG , Ming-guang YAO
{"title":"Synthesis of hexagonal diamond: A review","authors":"De-si CHEN ,&nbsp;Heng-yu LI ,&nbsp;Jia-jun DONG ,&nbsp;Ming-guang YAO","doi":"10.1016/S1872-5805(25)60993-0","DOIUrl":null,"url":null,"abstract":"<div><div>Lonsdaleite, also known as hexagonal diamond, is an allotrope of carbon with a hexagonal crystal structure, which was discovered in the nanostructure of the Canyon Diablo meteorite. Theoretical calculations have shown that this structure gives it exceptional physical properties that exceed those of cubic diamond, making it highly promising for groundbreaking applications in superhard cutting tools, wide-bandgap semiconductor devices, and materials for extreme environments. As a result, the controllable synthesis of hexagonal diamond has emerged as a cutting-edge research focus in materials science. This review briefly outlines the progress in this area, with a focus on the mechanisms governing its key synthesis conditions, its intrinsic physical properties, and its potential applications in various fields.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (82KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 3","pages":"Pages 584-595"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525609930","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Lonsdaleite, also known as hexagonal diamond, is an allotrope of carbon with a hexagonal crystal structure, which was discovered in the nanostructure of the Canyon Diablo meteorite. Theoretical calculations have shown that this structure gives it exceptional physical properties that exceed those of cubic diamond, making it highly promising for groundbreaking applications in superhard cutting tools, wide-bandgap semiconductor devices, and materials for extreme environments. As a result, the controllable synthesis of hexagonal diamond has emerged as a cutting-edge research focus in materials science. This review briefly outlines the progress in this area, with a focus on the mechanisms governing its key synthesis conditions, its intrinsic physical properties, and its potential applications in various fields.
  1. Download: Download high-res image (82KB)
  2. Download: Download full-size image
六方金刚石的合成研究进展
Lonsdaleite又称六边形钻石,是碳的同素异形体,具有六边形晶体结构,是在Diablo峡谷陨石的纳米结构中发现的。理论计算表明,这种结构使其具有超越立方金刚石的特殊物理性能,使其在超硬切削工具、宽带隙半导体器件和极端环境材料方面具有突破性的应用前景。因此,六边形金刚石的可控合成已成为材料科学领域的前沿研究热点。本文简要介绍了该领域的研究进展,重点介绍了其合成的关键条件、内在物理性质及其在各个领域的潜在应用。下载:下载高清图片(82KB)下载:下载全尺寸图片
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信