A review of thermally conductive graphene-based films

IF 5.7 3区 材料科学 Q2 Materials Science
Hui-jun LI , Qing ZHANG , Kun HUANG , Song-feng PEI , Wen-cai REN
{"title":"A review of thermally conductive graphene-based films","authors":"Hui-jun LI ,&nbsp;Qing ZHANG ,&nbsp;Kun HUANG ,&nbsp;Song-feng PEI ,&nbsp;Wen-cai REN","doi":"10.1016/S1872-5805(25)60990-5","DOIUrl":null,"url":null,"abstract":"<div><div>With the miniaturization and high integration of electronic devices, problems such as heat accumulation and non-uniform temperature distribution during operation have significantly compromised the reliability and stability of electronic systems, thereby hindering the advance of electronic technology. Because of the exceptionally high in-plane thermal conductivity of graphene, its films can effectively spread heat from localized hotspots to a larger heat dissipation area, thereby increasing the heat dissipation and reducing the operating temperatures of the device. As a result, such films are critical materials for thermal management in electronic equipment. This review systematically examines the relationship between their structure and thermal conductivity, outlines their main fabrication methods, explores the mechanisms for controlling defects in them using different precursors, formation processes, and heat treatments, and summarizes existing research aimed at improving their thermal conductivity. Finally, the problems associated with these films and their future development are discussed.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (96KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 3","pages":"Pages 540-552"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525609905","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

With the miniaturization and high integration of electronic devices, problems such as heat accumulation and non-uniform temperature distribution during operation have significantly compromised the reliability and stability of electronic systems, thereby hindering the advance of electronic technology. Because of the exceptionally high in-plane thermal conductivity of graphene, its films can effectively spread heat from localized hotspots to a larger heat dissipation area, thereby increasing the heat dissipation and reducing the operating temperatures of the device. As a result, such films are critical materials for thermal management in electronic equipment. This review systematically examines the relationship between their structure and thermal conductivity, outlines their main fabrication methods, explores the mechanisms for controlling defects in them using different precursors, formation processes, and heat treatments, and summarizes existing research aimed at improving their thermal conductivity. Finally, the problems associated with these films and their future development are discussed.
  1. Download: Download high-res image (96KB)
  2. Download: Download full-size image
导热石墨烯基薄膜的研究进展
随着电子器件的小型化和高集成化,运行过程中的热积累和温度分布不均匀等问题严重影响了电子系统的可靠性和稳定性,从而阻碍了电子技术的进步。由于石墨烯具有极高的面内热导率,其薄膜可以有效地将热量从局部热点扩散到更大的散热区域,从而增加散热,降低器件的工作温度。因此,这种薄膜是电子设备热管理的关键材料。本文系统地分析了其结构与导热系数之间的关系,概述了其主要的制备方法,探讨了利用不同的前驱体、形成工艺和热处理来控制其缺陷的机制,并总结了现有的旨在提高其导热系数的研究。最后,对这些电影存在的问题和未来的发展进行了讨论。下载:下载高清图片(96KB)下载:下载全尺寸图片
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信