Yong-fang ZHU , Xiao-dong JI , Wen-kai PAN , Geng WU , Peng LI , Bo LIU , Da-ping HE
{"title":"A review of graphene assembled films as platforms for electrochemical reactions","authors":"Yong-fang ZHU , Xiao-dong JI , Wen-kai PAN , Geng WU , Peng LI , Bo LIU , Da-ping HE","doi":"10.1016/S1872-5805(25)60992-9","DOIUrl":null,"url":null,"abstract":"<div><div>Because of their low electrical conductivity, sluggish ion diffusion, and poor stability, conventional electrode materials are not able to meet the growing demands of energy storage and portable devices. Graphene assembled films (GAFs) formed from graphene nanosheets have an ultrahigh conductivity, a unique 2D network structure, and exceptional mechanical strength, which give them the potential to solve these problems. However, a systematic understanding of GAFs as an advanced electrode material is lacking. This review focuses on the use of GAFs in electrochemistry, providing a comprehensive analysis of their synthesis methods, surface/structural characteristics, and physical properties, and thus understand their structure-property relationships. Their advantages in batteries, supercapacitors, and electrochemical sensors are systematically evaluated, with an emphasis on their excellent electrical conductivity, ion transport kinetics, and interfacial stability. The existing problems in these devices, such as chemical inertness and mechanical brittleness, are discussed and potential solutions are proposed, including defect engineering and hybrid structures. This review should deepen our mechanistic understanding of the use of GAFs in electrochemical systems and provide actionable strategies for developing stable, high-performance electrode materials.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (117KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 3","pages":"Pages 519-538"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525609929","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Because of their low electrical conductivity, sluggish ion diffusion, and poor stability, conventional electrode materials are not able to meet the growing demands of energy storage and portable devices. Graphene assembled films (GAFs) formed from graphene nanosheets have an ultrahigh conductivity, a unique 2D network structure, and exceptional mechanical strength, which give them the potential to solve these problems. However, a systematic understanding of GAFs as an advanced electrode material is lacking. This review focuses on the use of GAFs in electrochemistry, providing a comprehensive analysis of their synthesis methods, surface/structural characteristics, and physical properties, and thus understand their structure-property relationships. Their advantages in batteries, supercapacitors, and electrochemical sensors are systematically evaluated, with an emphasis on their excellent electrical conductivity, ion transport kinetics, and interfacial stability. The existing problems in these devices, such as chemical inertness and mechanical brittleness, are discussed and potential solutions are proposed, including defect engineering and hybrid structures. This review should deepen our mechanistic understanding of the use of GAFs in electrochemical systems and provide actionable strategies for developing stable, high-performance electrode materials.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.