Sobolev stability of hydrostatic ideal MHD equations in a thin domain

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Tianyuan Yu
{"title":"Sobolev stability of hydrostatic ideal MHD equations in a thin domain","authors":"Tianyuan Yu","doi":"10.1016/j.nonrwa.2025.104448","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the two-dimensional ideal MHD equations in a thin domain. When the initial data is assumed to be a small perturbation of a positive background magnetic field, we prove the well-posedness of the re-scaled ideal MHD equations. Then we justify the limit from the re-scaled ideal MHD equations to the hydrostatic ideal MHD equations and obtain the precise convergence rate in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104448"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001348","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the two-dimensional ideal MHD equations in a thin domain. When the initial data is assumed to be a small perturbation of a positive background magnetic field, we prove the well-posedness of the re-scaled ideal MHD equations. Then we justify the limit from the re-scaled ideal MHD equations to the hydrostatic ideal MHD equations and obtain the precise convergence rate in L.
薄域中流体静力理想MHD方程的Sobolev稳定性
本文研究了薄域上二维理想MHD方程。当初始数据被假设为一个正背景磁场的小扰动时,我们证明了重尺度理想MHD方程的适定性。然后,我们证明了从重尺度理想MHD方程到流体静力理想MHD方程的极限,得到了精确的L∞收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信