Comparison results for the fractional heat equation with a singular lower order term

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Barbara Brandolini , Ida de Bonis , Vincenzo Ferone , Bruno Volzone
{"title":"Comparison results for the fractional heat equation with a singular lower order term","authors":"Barbara Brandolini ,&nbsp;Ida de Bonis ,&nbsp;Vincenzo Ferone ,&nbsp;Bruno Volzone","doi":"10.1016/j.nonrwa.2025.104434","DOIUrl":null,"url":null,"abstract":"<div><div>We provide symmetrization results in the form of mass concentration comparisons for fractional singular parabolic equations in infinite cylinders of the type <span><math><mrow><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> (<span><math><mrow><mi>N</mi><mo>≥</mo><mn>2</mn></mrow></math></span>) is a bounded, open set with Lipschitz boundary, and <span><math><mrow><mi>T</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. The fundamental ingredients of the proof are an implicit time discretization procedure and a max/min argument, previously applied to nonlocal elliptic problems in the recent paper Brandolini et al. (2023).</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104434"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001208","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We provide symmetrization results in the form of mass concentration comparisons for fractional singular parabolic equations in infinite cylinders of the type Ω×(0,T), where ΩRN (N2) is a bounded, open set with Lipschitz boundary, and T>0. The fundamental ingredients of the proof are an implicit time discretization procedure and a max/min argument, previously applied to nonlocal elliptic problems in the recent paper Brandolini et al. (2023).
具有低阶奇异项的分数阶热方程的比较结果
我们以质量浓度比较的形式提供了Ω×(0,T)型无限柱面中的分数阶奇异抛物方程的对称结果,其中Ω∧RN (N≥2)是一个有界的开集,具有Lipschitz边界,T >0。证明的基本成分是隐式时间离散化过程和max/min参数,在最近的论文Brandolini et al.(2023)中先前应用于非局部椭圆问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信