Wen-ze WEI , Xiang GAO , Chao-jie YU , Xiao-li SUN , Tong-bo WEI , Li JIA , Jing-yu SUN
{"title":"Ethanol-assisted direct synthesis of wafer-scale nitrogen-doped graphene for III-nitride epitaxial growth","authors":"Wen-ze WEI , Xiang GAO , Chao-jie YU , Xiao-li SUN , Tong-bo WEI , Li JIA , Jing-yu SUN","doi":"10.1016/S1872-5805(25)60982-6","DOIUrl":null,"url":null,"abstract":"<div><div>Among the synthesis techniques for graphene, chemical vapor deposition (CVD) enables the direct growth of graphene films on insulating substrates. Its advantages include uniform coverage, high quality, scalability, and compatibility with industrial processes. Graphene is chemically inert and has a zero-bandgap which poses a problem for its use as a functional layer, and nitrogen doping has become an important way to overcome this. Post-plasma treatment has been explored for the synthesis of nitrogen-doped graphene, but the procedures are intricate and not suitable for large-scale production. We report the direct synthesis of nitrogen-doped graphene on a 4-inch sapphire wafer by ethanol-assisted CVD employing pyridine as the carbon feedstock, where the nitrogen comes from the pyridine and the hydroxyl group in ethanol improves the quality of the graphene produced. Additionally, the types of nitrogen dopant produced and their effects on III-nitride epitaxy were also investigated, resulting in the successful illumination of LED devices. This work presents an effective synthesis strategy for the preparation of nitrogen-doped graphene, and provides a foundation for designing graphene functional layers in optoelectronic devices.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (100KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 3","pages":"Pages 678-686"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525609826","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Among the synthesis techniques for graphene, chemical vapor deposition (CVD) enables the direct growth of graphene films on insulating substrates. Its advantages include uniform coverage, high quality, scalability, and compatibility with industrial processes. Graphene is chemically inert and has a zero-bandgap which poses a problem for its use as a functional layer, and nitrogen doping has become an important way to overcome this. Post-plasma treatment has been explored for the synthesis of nitrogen-doped graphene, but the procedures are intricate and not suitable for large-scale production. We report the direct synthesis of nitrogen-doped graphene on a 4-inch sapphire wafer by ethanol-assisted CVD employing pyridine as the carbon feedstock, where the nitrogen comes from the pyridine and the hydroxyl group in ethanol improves the quality of the graphene produced. Additionally, the types of nitrogen dopant produced and their effects on III-nitride epitaxy were also investigated, resulting in the successful illumination of LED devices. This work presents an effective synthesis strategy for the preparation of nitrogen-doped graphene, and provides a foundation for designing graphene functional layers in optoelectronic devices.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.