Ethanol-assisted direct synthesis of wafer-scale nitrogen-doped graphene for III-nitride epitaxial growth

IF 5.7 3区 材料科学 Q2 Materials Science
Wen-ze WEI , Xiang GAO , Chao-jie YU , Xiao-li SUN , Tong-bo WEI , Li JIA , Jing-yu SUN
{"title":"Ethanol-assisted direct synthesis of wafer-scale nitrogen-doped graphene for III-nitride epitaxial growth","authors":"Wen-ze WEI ,&nbsp;Xiang GAO ,&nbsp;Chao-jie YU ,&nbsp;Xiao-li SUN ,&nbsp;Tong-bo WEI ,&nbsp;Li JIA ,&nbsp;Jing-yu SUN","doi":"10.1016/S1872-5805(25)60982-6","DOIUrl":null,"url":null,"abstract":"<div><div>Among the synthesis techniques for graphene, chemical vapor deposition (CVD) enables the direct growth of graphene films on insulating substrates. Its advantages include uniform coverage, high quality, scalability, and compatibility with industrial processes. Graphene is chemically inert and has a zero-bandgap which poses a problem for its use as a functional layer, and nitrogen doping has become an important way to overcome this. Post-plasma treatment has been explored for the synthesis of nitrogen-doped graphene, but the procedures are intricate and not suitable for large-scale production. We report the direct synthesis of nitrogen-doped graphene on a 4-inch sapphire wafer by ethanol-assisted CVD employing pyridine as the carbon feedstock, where the nitrogen comes from the pyridine and the hydroxyl group in ethanol improves the quality of the graphene produced. Additionally, the types of nitrogen dopant produced and their effects on III-nitride epitaxy were also investigated, resulting in the successful illumination of LED devices. This work presents an effective synthesis strategy for the preparation of nitrogen-doped graphene, and provides a foundation for designing graphene functional layers in optoelectronic devices.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (100KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 3","pages":"Pages 678-686"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525609826","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Among the synthesis techniques for graphene, chemical vapor deposition (CVD) enables the direct growth of graphene films on insulating substrates. Its advantages include uniform coverage, high quality, scalability, and compatibility with industrial processes. Graphene is chemically inert and has a zero-bandgap which poses a problem for its use as a functional layer, and nitrogen doping has become an important way to overcome this. Post-plasma treatment has been explored for the synthesis of nitrogen-doped graphene, but the procedures are intricate and not suitable for large-scale production. We report the direct synthesis of nitrogen-doped graphene on a 4-inch sapphire wafer by ethanol-assisted CVD employing pyridine as the carbon feedstock, where the nitrogen comes from the pyridine and the hydroxyl group in ethanol improves the quality of the graphene produced. Additionally, the types of nitrogen dopant produced and their effects on III-nitride epitaxy were also investigated, resulting in the successful illumination of LED devices. This work presents an effective synthesis strategy for the preparation of nitrogen-doped graphene, and provides a foundation for designing graphene functional layers in optoelectronic devices.
  1. Download: Download high-res image (100KB)
  2. Download: Download full-size image
用于iii -氮化物外延生长的氮掺杂石墨烯的乙醇辅助直接合成
在石墨烯的合成技术中,化学气相沉积(CVD)可以在绝缘衬底上直接生长石墨烯薄膜。它的优点包括统一的覆盖范围、高质量、可伸缩性以及与工业过程的兼容性。石墨烯具有化学惰性和零带隙,这给其作为功能层的使用带来了问题,氮掺杂已成为克服这一问题的重要途径。后等离子体处理已被用于氮掺杂石墨烯的合成,但程序复杂,不适合大规模生产。我们报道了在4英寸蓝宝石晶圆上用乙醇辅助气相沉积法以吡啶为碳原料直接合成氮掺杂石墨烯,其中氮来自吡啶,乙醇中的羟基提高了石墨烯的质量。此外,还研究了氮掺杂的类型及其对iii -氮化物外延的影响,从而成功地实现了LED器件的照明。本研究为氮掺杂石墨烯的制备提供了一种有效的合成策略,为光电器件中石墨烯功能层的设计提供了基础。下载:下载高清图片(100KB)下载:下载全尺寸图片
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信