Microwave-enabled rapid, continuous, and substrate-free synthesis of few-layer graphdiyne nanosheets for enhanced potassium metal battery performance

IF 5.7 3区 材料科学 Q2 Materials Science
Ya KONG , Shi-peng ZHANG , Yu-ling YIN , Zi-xuan ZHANG , Xue-ting FENG , Feng DING , Jin ZHANG , Lian-ming TONG , Xin GAO
{"title":"Microwave-enabled rapid, continuous, and substrate-free synthesis of few-layer graphdiyne nanosheets for enhanced potassium metal battery performance","authors":"Ya KONG ,&nbsp;Shi-peng ZHANG ,&nbsp;Yu-ling YIN ,&nbsp;Zi-xuan ZHANG ,&nbsp;Xue-ting FENG ,&nbsp;Feng DING ,&nbsp;Jin ZHANG ,&nbsp;Lian-ming TONG ,&nbsp;Xin GAO","doi":"10.1016/S1872-5805(25)60987-5","DOIUrl":null,"url":null,"abstract":"<div><div>Graphdiyne (GDY) is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention. However, its efficient and scalable synthesis remains a significant challenge. We present a microwave-assisted approach for its continuous, large-scale production which enables synthesis at a rate of 0.6 g/h, with a yield of up to 90%. The synthesized GDY nanosheets have an average diameter of 246 nm and a thickness of 4 nm. We used GDY as a stable coating for potassium (K) metal anodes (K@GDY), taking advantage of its unique molecular structure to provide favorable paths for K-ion transport. This modification significantly inhibited dendrite formation and improved the cycling stability of K metal batteries. Full-cells with perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) cathodes showed the clear superiority of the K@GDY anodes over bare K anodes in terms of performance, stability, and cycle life. The K@GDY maintained a stable voltage plateau and gave an excellent capacity retention after 600 cycles with nearly 100% Coulombic efficiency. This work not only provides a scalable and efficient way for GDY synthesis but also opens new possibilities for its use in energy storage and other advanced technologies.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (156KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 3","pages":"Pages 642-650"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525609875","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Graphdiyne (GDY) is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention. However, its efficient and scalable synthesis remains a significant challenge. We present a microwave-assisted approach for its continuous, large-scale production which enables synthesis at a rate of 0.6 g/h, with a yield of up to 90%. The synthesized GDY nanosheets have an average diameter of 246 nm and a thickness of 4 nm. We used GDY as a stable coating for potassium (K) metal anodes (K@GDY), taking advantage of its unique molecular structure to provide favorable paths for K-ion transport. This modification significantly inhibited dendrite formation and improved the cycling stability of K metal batteries. Full-cells with perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) cathodes showed the clear superiority of the K@GDY anodes over bare K anodes in terms of performance, stability, and cycle life. The K@GDY maintained a stable voltage plateau and gave an excellent capacity retention after 600 cycles with nearly 100% Coulombic efficiency. This work not only provides a scalable and efficient way for GDY synthesis but also opens new possibilities for its use in energy storage and other advanced technologies.
  1. Download: Download high-res image (156KB)
  2. Download: Download full-size image
微波支持快速,连续,无底物合成的少层石墨烯纳米片,以增强钾金属电池的性能
石墨二炔(GDY)是一种具有特殊物理和化学性质的二维碳同素异形体,越来越受到人们的关注。然而,其高效和可扩展的合成仍然是一个重大挑战。我们提出了一种微波辅助的连续大规模生产方法,可以以0.6 g/h的速度合成,收率高达90%。合成的GDY纳米片平均直径为246 nm,厚度为4 nm。我们使用GDY作为钾(K)金属阳极的稳定涂层(K@GDY),利用其独特的分子结构为K离子传输提供有利的路径。该改性显著抑制了K金属电池枝晶的形成,提高了K金属电池的循环稳定性。采用苝-3,4,9,10-四羧酸二酐(PTCDA)阴极的全电池在性能、稳定性和循环寿命方面明显优于裸K阳极。K@GDY在600次循环后保持稳定的电压平台,并具有接近100%的库仑效率。这项工作不仅为GDY合成提供了一种可扩展和高效的方法,而且为其在储能和其他先进技术中的应用开辟了新的可能性。下载:下载高分辨率图片(156KB)下载:下载全尺寸图片
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信