High strength carbon nanotube fibers: synthesis development, property improvement and possible applications

IF 5.7 3区 材料科学 Q2 Materials Science
Ao SUN , Nuo XU , Yue-fan WANG , Jia-qi XU , Zi-zheng SHI , Xiao ZHANG
{"title":"High strength carbon nanotube fibers: synthesis development, property improvement and possible applications","authors":"Ao SUN ,&nbsp;Nuo XU ,&nbsp;Yue-fan WANG ,&nbsp;Jia-qi XU ,&nbsp;Zi-zheng SHI ,&nbsp;Xiao ZHANG","doi":"10.1016/S1872-5805(25)60980-2","DOIUrl":null,"url":null,"abstract":"<div><div>The use of carbon nanotube fibers (CNTFs), which are macroscopic assemblies of billions of carbon nanotubes (CNTs), has long been limited by their disordered and loose microstructures. As a result, their mechanical properties are several orders of magnitude lower than those of single CNTs. In recent years, with the innovation in CNTF preparation techniques, not only has continuous mass production at the industrial level been achieved, but the cost has also significantly decreased to levels close to those of high-performance commercial fibers due to the economies of scale. High performance CNTFs have been developed that have a high strength, moderate to high modulus, high electrical conductivity, high thermal conductivity, high flexibility, and low density. These advanced CNTFs have not only surpassed the characteristic properties of benchmark commercial fibers but have also been widely explored for use in structural materials for aerospace, conductive cables, and novel mechanical energy harvesting. During the last decade there has been significant improvements in CNTF preparation techniques, post-synthesis treatment and its mechanisms, understanding the failure mechanisms of structures developed from them, and many new applications have been explored. The review attempts to understand the key problems in transferring properties from the nanoscale to the macroscale and discusses feasible ways to approach the superior properties of CNTs in order to widen the future applications of CNTFs.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (89KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 3","pages":"Pages 621-641"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525609802","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

The use of carbon nanotube fibers (CNTFs), which are macroscopic assemblies of billions of carbon nanotubes (CNTs), has long been limited by their disordered and loose microstructures. As a result, their mechanical properties are several orders of magnitude lower than those of single CNTs. In recent years, with the innovation in CNTF preparation techniques, not only has continuous mass production at the industrial level been achieved, but the cost has also significantly decreased to levels close to those of high-performance commercial fibers due to the economies of scale. High performance CNTFs have been developed that have a high strength, moderate to high modulus, high electrical conductivity, high thermal conductivity, high flexibility, and low density. These advanced CNTFs have not only surpassed the characteristic properties of benchmark commercial fibers but have also been widely explored for use in structural materials for aerospace, conductive cables, and novel mechanical energy harvesting. During the last decade there has been significant improvements in CNTF preparation techniques, post-synthesis treatment and its mechanisms, understanding the failure mechanisms of structures developed from them, and many new applications have been explored. The review attempts to understand the key problems in transferring properties from the nanoscale to the macroscale and discusses feasible ways to approach the superior properties of CNTs in order to widen the future applications of CNTFs.
  1. Download: Download high-res image (89KB)
  2. Download: Download full-size image
高强度碳纳米管纤维:合成发展、性能改进及应用前景
碳纳米管纤维(CNTFs)是由数十亿个碳纳米管(CNTs)组成的宏观集合体,长期以来由于其无序和松散的微观结构而受到限制。因此,它们的力学性能比单个碳纳米管的力学性能低几个数量级。近年来,随着CNTF制备技术的不断创新,不仅实现了工业化水平的连续量产,而且由于规模经济,成本也大幅下降,接近高性能商用纤维的水平。高性能cntf具有高强度、中高模量、高导电性、高导热性、高柔韧性和低密度等特点。这些先进的cntf不仅超越了基准商用纤维的特性,而且在航空航天、导电电缆和新型机械能量收集的结构材料中得到了广泛的应用。在过去的十年中,CNTF的制备技术,合成后处理及其机理,对其开发的结构的破坏机制的理解,以及许多新的应用都有了显著的改进。本文试图了解从纳米尺度向宏观尺度转变的关键问题,并探讨了实现碳纳米管优越性能的可行途径,以扩大碳纳米管的未来应用。下载:下载高清图片(89KB)下载:下载全尺寸图片
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信